INSIGHTS ENGINE FOOD WASTE MONITOR

2020 METHODOLOGY
CONTENTS
ACKNOWLEDGMENTS 1
OVERVIEW 4
FARM METHODOLOGY 8
Scope Boundary. 8
Calculations 9
Data Sources and Limitations 16
Data Quality Evaluation 20
MANUFACTURING METHODOLOGY 23
Scope Boundary 23
Calculations 24
Data Sources and Limitations. 39
Data Quality Evaluation 43
RETAIL METHODOLOGY 46
Scope Boundary 46
Calculations 47
Data Sources and Limitations. 52
Data Quality Evaluation 55
FOODSERVICE METHODOLOGY 57
Scope Boundary 57
Calculations 58
Data Sources and Limitations. 76
Data Quality Evaluation 80
RESIDENTIAL METHODOLOGY 83
Scope Boundary 83
Calculations 84
Data Sources and Limitations. 88
Data Quality Evaluation 91
WORKS CITED 92
APPENDIX 96
Appendix A: Farm Yield Left Behind After Harvest 96
Appendix B: Farm Field Packing Rates for Fresh Market Produce 99
Appendix C: Buyer Rejection Rates 100
Appendix D: Causes of Fields Never Harvested (Walk-by Fields) 100
Appendix E: Causes of Yield Left Behind After Harvest 101
Appendix F: Causes of Packhouse Losses 102
Appendix G: Destinations of Packhouse Losses 102
Appendix H: Retail Margins 103
Appendix I: Unshipped Product Rates and Ingredient Utilization Rates 104
Appendix J: Destinations of Manufacturing Surplus 107
Appendix K: Retail Unsold Food Rates: USDA Supermarket Shrink Estimates 108
Appendix L: Retail Unsold Food Rates: FMI Supermarket Security and Loss Prevention Report 111
Appendix M: Causes of Retail Surplus 112
Appendix N: Destinations of Retail Surplus. 113
Appendix O: Foodservice Food Type Breakdown and Wholesale Prices 11
Appendix P: Plate Waste Rates 120
Appendix Q: Catering Overproduction Rates 122
Appendix R: Causes of Foodservice Pre-Consumer Surplus 123
Appendix S: Destinations of Foodservice Pre-Consumer Surplus 126
Appendix T: Destinations of Foodservice Plate Waste 127
Appendix U: Destinations of Foodservice Catering Overproduction 128
Appendix V: \% of Food Obtained From Grocery Stores 129
Appendix W: Residential Surplus Rates 138
Appendix X: Causes of Residential Surplus 141
Appendix Y: Destinations of Residential Surplus 145
Appendix Z: Landfill and Incineration Rates 148
Appendix AA: Data Quality Rubric 150

ACKNOWLEDGMENTS

Contract Partners \＆Data Contributors

JUNIATA

ANALYTICS

Juniata Analytics is a tech start－up working at the intersection of business，sustainability，and software to help organizations calculate，analyze，and share sustainability information across internal operations and supply chains．Juniata was responsible for crafting the initial vision for the ReFED Insights Engine，managing the project and coordinating contractors，developing the methodologies，collecting and processing data，and developing a web application to automate the data modeling．

NielsenIQ

NielsenIQ is the leader in providing the most complete，unbiased view of consumer behavior，globally．Powered by a ground－breaking consumer data platform and fueled by rich analytic capabilities，NielsenIQ enables bold，confident decision－making for the world＇s leading consumer goods companies and retailers．Using comprehensive data sets and measuring all transactions equally，NielsenIQ gives clients a forward－looking view into consumer behavior in order to optimize performance across all retail platforms．Our open philosophy on data integration enables the most influential consumer data sets on the planet．NielsenIQ delivers the complete truth．NielsenIQ，an Advent International portfolio company，has operations in nearly 100 markets，covering more than 90% of the world＇s population．For more information，visit www．nielseniq．com．or https：／／www．linkedin．com／company／nielseniq／mycompany／

We care for the communities and markets where we live and operate our business，through responsible，sustainable business practices and our commitment to giving back：sharing consumer insights and data with the world，donating pro bono skills－based volunteering and projects to nonprofit organizations．NielsenIQ is committed to help create new solutions to social and environmental challenges and shape a smarter market．This collaboration with ReFED is one example of how NielsenIQ is taking action．NielsenIQ is donating five years of food pricing and purchase data to help ReFED launch their ReFED Insights Engine，a digital－first，continuously updated platform to house the next generation of data and insights on food waste．

（4⿹⿺𠃑一丨一八⺀大 Leanpath

Leanpath provided custom－prepared data for the ReFED Insights Engine for use in the Foodservice sector of the Food Waste Monitor Methodology．Leanpath is on a mission to make food waste prevention and measurement everyday practice in the world＇s kitchens．Leanpath believes that frontline foodservice workers are the real change agents in the global fight against food waste．Leanpath empowers them through measurement－focused technology to reduce food waste，thus enabling them to have a meaningful impact on the environment while improving their kitchen＇s efficiency and reducing costs．Since 2014 alone，Leanpath－empowered culinary teams have prevented over 61 million pounds of food from being wasted in thousands of kitchens around the world．Leanpath invented automated food waste tracking technology in 2004 and provides a complete food waste prevention solution，including data－collection tools，cloud－based analytics，and expert coaching．

ACKNOWLEDGMENTS

Contract Partners \& Data Contributors (Continued)

Northstar Recycling provided custom-prepared data for the ReFED Insights Engine for use in the Manufacturing sector of the Food Waste Monitor Methodology. Founded on five generations of industry expertise, Northstar Recycling is redefining what it means to be a national waste and recycling company. They have cultivated a network of over 5,0oo qualified service partners to provide their clients a seamless, single point of contact for all their waste needs. This unique business model also allows them the flexibility to provide innovative solutions that help their clients increase recycling, lower disposal volumes, and increase profits.

NRDC (Natural Resources Defense Council) provided expert feedback and guidance during the development of the ReFED Insights Engine. They also proided detailed information on the causes and destinations of food waste in the home that was used in the Residential sector of the Food Waste Monitor Methodology. NRDC works to safeguard the earthits people, its plants and animals, and the natural systems on which all life depends. They combine the power of more than three million members and online activists with the expertise of some 700 scientists, lawyers, and policy advocates across the globe to ensure the rights of all people to the air, the water, and the wild.

Technomic provided ReFED with datasets on the sales and operator purchases of U.S. restaurant and foodservice providers. This data was used in the Foodservice sector of the of the Food Waste Monitor Methodology. For 50 years, Technomic has provided foodservice clients around the globe with the research, insights and strategic consulting support they need to enhance their business strategies, decisions and results. Its services include category and channel analyses, customer satisfaction studies, market opportunity assessments and strategic entry planning, benchmarking programs and brand equity enhancement. Technomic excels at industry intelligence, forecasts, data, training support and consumer research.

ACKNOWLEDGMENTS

Thank You To Our Funders

Launched with anchor funding from The Kroger
Co. Zero Hunger | Zero Waste Foundation
*The views expressed herein do not necessarily
represent those of The Kroger Co. Zero Hunger |
Zero Waste Foundation or The Kroger Co.

AJANA FOUNDATION	ARJAY R. \& FRANCES F. MILLER FAMILY FOUNDATION	ATTICUS TRUST	\%. The Claneil Foundation
CROWN FAMILY PHILANTHROPIES		General Mills	Harbourton Foundation
HELLMANNS	Best Foods. Enst	THE HINDAWI FOUNDATION	KENNETH GOLDMAN DONOR FUND
PETER WELLES	POSNER FOUNDATION of Pittshurgh	$\begin{aligned} & \text { spreing } \\ & \text { pointe } \end{aligned}$	Walmart \% $_{1}$: Foundation
WIANCKO CHARITABLE FOUNDATION	ROBERT W. WILSON CHARITABLE TRUST	ANONYMOUS DONORS (2)	

Report Authors

Caroline Powell, Director of Product Development -
Juniata Analytics
Philip Curtis, Director of Operations - Juniata Analytics

ReFED Team Contributors

Dana Gunders, Executive Director
David Brooks, Insights Engine Product Manager

OVERVIEW

In 2016, ReFED launched its landmark Roadmap to Reduce U.S. Food Waste by 20\%. That initial report became a touchstone for those in the food waste space, but there was a growing need for more and more granular - data about the issue to fill in knowledge gaps and move the food system from awareness about the issue to insight-driven action. The newly developed ReFED Insights Engine is the next generation of data, insights, and guidance on U.S. food waste. This online data and solutions hub for food loss and waste is designed to provide anyone interested in food waste reduction with the information and insights they need to take meaningful action to address the problem and move a step forward towards achieving national and international goals of reducing food waste by 50 percent by 2030.

Current ReFED Insights Engine tools include:

- Food Waste Monitor: Centralized, trusted repository of information built with data from more than 50 public and proprietary datasets that shows how much food is being wasted in the U.S., why it's happening, and where it goes.
- Impact Calculator: Quantifies the impact of wasted food on the climate, natural resources, lost meals, and the economy.
- Solutions Database: Provides a stakeholder-specific, comprehensive analysis of 40+ food waste reduction solutions based on impact goals, along with detailed fact sheets on each.
- Solution Provider Directory: Connects users with a vetted list of 700+ nonprofit and for-profit organizations ready to help implement food waste reduction initiatives.

Food Waste Monitor

The Food Waste Monitor is comprised of five sectors, each modeled independently: Farm, Manufacturing, Retail, Foodservice, and Residential. This document describes the methodology used to quantify the amount of food surplus happening in each sector, the reasons why it's happening (e.g., causes), and where the food is being sent (e.g., destinations).

Before starting development, the ReFED team sought feedback from its vast network of industry professionals from businesses, capital providers, government, nonprofits, and academia. The Food Waste Monitor was designed to incorporate this feedback and maintain the strengths of the 2016 Roadmap report while filling previous information gaps with new data and models in a continuously improved, digital format. The following thematic areas summarize the major additions and improvements made:

Roadmap to 50\% Reduction by 2030

- Aligned with national and international goals: The previous Roadmap outlined a path to reduce U.S. food waste by 20\%. This new solutions Roadmap provides a path to 50% reduction by 2030, in alignment with U.S. and international goals. This assumes, however, that there is 100% adoption of all the solutions in the database.

New and More Granular Information

- Quantified causes of food waste: Quantifying the reasons why food waste is happening is a necessary precursor to calculating the potential benefit of food waste solutions. Until now, this causal information has not been quantified. ReFED applied solutions only to the portions of surplus where the solution applied. For instance, a donation solution was only applied to overproduced food in restaurant kitchens, not the waste left on customers plates. By gaining this understanding, ReFED is now able to more accurately estimate the potential impact of solutions
- Results tailored to specific sectors and stakeholders: Stakeholders can now quickly filter and view information that is relevant specifically to them. The previous Roadmap aggregated the costs and benefits of solutions across all stakeholders involved. It was not always clear when misaligned incentives existed (e.g., When implementing a solution required one stakeholder to bear most of the cost while others benefited). Now users are able to break out the costs and benefits for each stakeholder involved, providing a better understanding of the misaligned incentives and financial barriers that still exist for many solutions. This allows misaligned incentives to be identified and collectively addressed.
- Food type specific data: Improved decision making requires food type specific information (e.g., developing a strategy to increase donations of produce specifically). In the past, much of the modeling was not food type specific. ReFED's models now take food type into account at much more granular levels, leading to more accurate insights.
- Geographically specific (state-level) data: ReFED data now reflects major differences between states (e.g., California has a large agricultural produce sector, Wisconsin has a large dairy manufacturing sector, Hawaii has a large foodservice and hospitality sector). This analysis now enables state-level actors to filter and prioritize different solutions based on their state's local economy and food waste patterns.

Interactivity and Automation

- Interactive digital format: Different audiences have different needs. ReFED has moved to interactive online tools that allow stakeholders to quickly obtain data tailored to their specific needs. Some materials will still be provided in PDF format as well.
- Quick updates and rapid feedback loop: A custom, automated web application allows the models to be rerun and the platform to be quickly updated with the latest information. This reduces the time required to produce new results to hours instead of months or years. This rapid feedback loop allows solutions to be quickly reprioritized according to the latest learnings as solutions are implemented and scaled. ReFED is planning to update results once or twice annually.

Transparency

- Data quality scores: ReFED developed data quality scores to communicate how confident ReFED is in the data being shared based on the quality of the underlying data sources and how they were used. These scores are now displayed front-and-center on the website rather than only in the documentation. This addition allows ReFED to share newly emerging data while maintaining transparency about the data confidence.
- Open source data: Raw data and documentation is now made publicly available as much as legally possible. Confidential data is only used in cases where it yielded significant advantages over publicly available data.

Research Opportunities

- Setting a research agenda: ReFED's new models and data quality scores are able to succinctly highlight what data is most critical and where it is lacking. ReFED hopes that this information will be used to prioritize research funding and advance new research projects.

Adaptable Framework

- Platform can be expanded to other countries if needed: Because the first version of the Roadmap served as inspiration for many other food waste initiatives at the international level, this platform was intentionally designed to be expanded to other countries using geographically specific data.

NOTICE AN ISSUE WITH THE DATA?

Send us an email! The Insights Engine was designed to be radically transparent so that the community of people using this work can help spot issues and identify opportunities to continually improve the data over time. If you see any mistakes, have additional information, or have recommendations for how to improve this resource, please let us know.

INSIGHTS ENGINE FOOD WASTE MONITOR

2020 FARM METHODOLOGY

FARM METHODOLOGY

Scope Boundary

The following diagram communicates the scope boundary as aligned with the Food Loss and Waste Accounting and Reporting Standard ${ }^{1}$. Note that ReFED's analysis also includes food sent to donations, although donations are not considered a destination within the Standard.

*NOTES

- "Food Donation" has been added as a Destination
- "Biomaterial Processing is referred to as "Industrial Uses" in our model
- "Co/anaerobic digestion" is referred to as "Anaerobic digestion" in our model
- "Controlled Combustion" is referred to as "Incineration" in our model
- "Refuse/discards" is referred to as "Dumping" in our model

Calculations

Surplus Food Calculations

Master Surplus Equation:

Tons Never Harvested (Walk-by Fields)

+ Tons Left Behind After Harvest
+ Tons Packhouse Losses
+ Tons Unsold Buyer Rejections
= Tons Farm Surplus

In ReFED's data model, the following calculations are repeated for every state, year, and farm produce commodity before any aggregation is done.

Table 1. Calculations Performed to Quantify U.S. Farm Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Acres Planted	USDA Surveys ${ }^{2}$	10,000 acres of Asparagus planted in Michigan in 2019
Acres Harvested	USDA Surveys ${ }^{2}$	9,400 acres of Asparagus harvested in Michigan in 2019
Acres Unharvested	= Acres Planted - Acres Harvested	$\begin{aligned} & =10,000-9,400 \\ & =600 \text { acres unharvested } \end{aligned}$
US Dollars Harvested	USDA Surveys ${ }^{2}$	$\$ 25,607,000$ of Asparagus harvested in Michigan in 2019
Tons Harvested	USDA Surveys ${ }^{2}$	14,100 tons of Asparagus produced in Michigan in 2019
Yield Tons per Acre	= Tons Harvested / Acres Harvested	$=14,100$ tons produced $/ 9,400$ acres harvested $=1.5$ tons per acre
\% Maturity of Fields Never Harvested	ReFED assumption	In lieu of available data, ReFED assumed that only 50% of produce fields that are planted but never harvested reach maturity (yield produce that could be eaten) as opposed to fields that are planted but discontinued before the crop bears fruit.
Tons Never Harvested (Walk-by Fields)	= Acres Unharvested * Yield Tons per Acre * \% Maturity of Fields Never Harvested	$\begin{aligned} & =600 \text { acres unharvested } * 1.5 \text { tons per acre } \\ & * 50 \% \\ & =450 \text { tons never harvested } \end{aligned}$
\% Yield Left Behind After Harvest	Farm Case Studies ${ }^{3,4,56}$	Proxy commodity: Cabbage 2019 Santa Clara University Study 13.38% marketed yield of cabbage left behind after harvest (See Appendix A)

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Tons Left Behind After Harvest	= Acres Harvested * Yield Tons per Acre * \% Yield Left Behind After Harvest	= 9,400 acres harvested * 1.5 tons per acre * 13.38% left behind after harvest $=1,886$ tons left behind after harvest
Tons Unharvested Total	= Tons Never Harvested + Tons Left Behind After Harvest	$=450$ tons never harvested $+1,886$ tons left behind after harvest $=2,336$ total tons unharvested
\% Processing (as opposed to Fresh Market)	USDA Surveys ${ }^{2}$	48.45\% of asparagus grown in Michigan in 2019 went to the processing market
\% Field Packed	Public Agriculture Websites ${ }^{7,8,9,10,11,12}$	According to the University of California Division of Agriculture and Natural Resources, 0% of asparagus is field packed
\% Packhouse Loss Rate	WWF Specialty Crop Loss Report ${ }^{6}$	Proxy commodity: Potatoes 14.8% losses by weight at the packhouse
Tons Sent to Packhouses	$\begin{aligned} & \text { = Tons Harvested * } \\ & \text { (100\% - \% Processing) * } \\ & \text { (} 100 \% \text { - \% Field Packed) } \end{aligned}$	$\begin{aligned} & =14,100 \text { tons harvested } *(100 \%-48.45 \% \\ & \text { processing }) *(100 \%-0 \% \text { field packed }) \\ & =7,268 \text { tons sent to packhouses } \end{aligned}$
Tons Packhouse Losses	= Tons Sent to Packhouses * \% Packhouse Loss Rate	$\begin{aligned} & =7,268 \text { tons sent to packhouses * 14.8\% } \\ & \text { packhouse losses } \\ & =1,076 \text { tons packhouse losses } \end{aligned}$
\% Buyer Rejection Rate	Expert Interviews	According to experts, about 2\% of produce deliveries are rejected by the quality assurance team at buyer receiving (See Appendix C)
Tons Shipped from Packhouse	= Tons Sent to Packhouse - Tons Packhouse Losses	$=7,268$ tons sent to packhouse $-1,076$ tons packhouse losses $=6,192$ tons shipped from packhouse
\% of Buyer Rejections Sold via Discount Outlets	Expert interviews	Based on expert interviews, ReFED assumed that 25% of produce rejected by buyer quality assurance teams ends up being sold via other channels and does not get wasted.
Tons Unsold Buyer Rejections	= Tons Shipped from Packhouse * \% Buyer Rejection Rate * (100% - \% of Buyer Rejections Sold via Discount Outlets)	$=6,192$ tons shipped from packhouse * 2% buyer rejections * (100% - 25% sold via discount outlets) $=93$ tons unsold buyer rejections
Price per Ton	= US Dollars Harvested / Tons Harvested	$=\$ 25,607,000$ harvested / 14,100 tons harvested $=\$ 1,816$ per ton
US Dollars Never Harvested	= Tons Never Harvested * Price per Ton	$\begin{aligned} & =450 \text { tons never harvested } * \$ 1,816 \text { per ton } \\ & =\$ 817,245 \text { never harvested } \end{aligned}$
US Dollars Left Behind After Harvest	= Tons Left Behind After Harvest * Price per Ton	```= 1,886 tons left behind after harvest * $1,816 per ton = $3,425,580 left behind after harvest```

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE

Cause Calculations

Master Cause Equation:
Tons Surplus due to Cause = Tons Surplus * \% Loss due to Cause

Table 2. Calculations Performed to Quantify the Causes of U.S. Farm Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
NEVER HARVESTED CAUSES		
\% Loss due to Cause	USDA RMA Crop Insurance ${ }^{13}$	Proxy commodity: "All Other Crops" was used because Asparagus acreage was relatively smaller than other commodities and was aggregated into the All Other Crops category in the USDA RMA data. See example data in Appendix D
		Fields never harvested (bad weather): 95.43\% Fields never harvested (market dynamics): 3.28\% Fields never harvested (pests/disease): 1.29\%

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Tons Surplus due to Cause	= Tons Never Harvested * \% Loss due to Cause	Fields never harvested (bad weather): = 450 tons never harvested * 95.43\% = 429 tons Fields never harvested (market dynamics): = 450 tons never harvested * 3.28\% $=15$ tons Fields never harvested (pests/disease): = 450 tons never harvested * 1.29\% $=6$ tons
US Dollars Surplus due to Cause	= US Dollars Never Harvested * \% Loss due to Cause	Fields never harvested (bad weather): $=\$ 817,245$ never harvested * 95.43\% =\$779,933 Fields never harvested (market dynamics): = \$817,245 never harvested * 3.28\% $=\$ 26,764$ Fields never harvested (pests/disease): = \$817,245 never harvested * 1.29\% $=\$ 10,548$
LEFT BEHIND AFTER HARVEST CAUSES		
\% Loss due to Cause	Farm Case Studies ${ }^{2,3}$	Proxy commodity: Cabbage See example data in Appendix E 2018 NC State Study 33\% Left behind after harvest (inedible) 2\% Left behind after harvest (marketable) 65\% Left behind after harvest (not marketable) Total $=100 \%$
Tons Surplus due to Cause	= Tons Left Behind After Harvest * \% Loss due to Cause	Left behind after harvest (inedible): $=1,886$ tons left behind after harvest * 33% $=623$ tons
		Left behind after harvest (marketable): = 1,886 tons left behind after harvest * 2% $=39$ tons
		Left behind after harvest (not marketable): $=1,886$ tons left behind after harvest * 65% $=1,224$ tons

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
US Dollars Surplus due to Cause	= US Dollars Left Behind After Harvest * \% Loss due to Cause	Left behind after harvest (inedible): $=\$ 3,425,580$ left behind after harvest * 33\% $=\$ 1,132,163$ Left behind after harvest (marketable): $\begin{aligned} & =\$ 3,425,580 \text { left behind after harvest * } 2 \% \\ & =\$ 70,981 \end{aligned}$ Left behind after harvest (not marketable): = \$3,425,580 left behind after harvest * 65\% $=\$ 2,222,436$
PACKHOUSE LOSS CAUSES		
\% Loss due to Cause	WWF Specialty Crop Loss Report ${ }^{6}$	Proxy commodity: Tomatoes See example data in Appendix F 77\% Packhouse losses (inedible) 23\% Packhouse losses (not marketable) Total = 100\%
Tons Surplus due to Cause	= Tons Harvested but Not Sold * \% Loss due to Cause	$\begin{aligned} & \text { Packhouse losses (inedible): } \\ & =1,076 \text { tons packhouse losses * } 77 \% \\ & =828 \text { tons } \\ & \text { Packhouse losses (not marketable): } \\ & =1,076 \text { tons packhouse losses * } 23 \% \\ & =247 \text { tons } \end{aligned}$
US Dollars Surplus due to Cause	= US Dollars Harvested but Not Sold * \% Loss due to Cause	$\begin{aligned} & \text { Packhouse losses (inedible): } \\ & =\$ 1,953,524 \text { packhouse losses * } 77 \% \\ & =\$ 1,504,213 \end{aligned}$ Packhouse losses (not marketable): = \$1,953,524 packhouse losses * 23\% $=\$ 449,310$
BUYER REJECTIONS		
Tons Unsold Buyer Rejections	See calculation above for Tons Unsold Buyer Rejections	= 93 tons unsold buyer rejections
US Dollars Unsold Buyer Rejections	See calculation above for US Dollars Unsold Buyer Rejections	= \$168,689 unsold buyer rejections

Destination Calculations

Master Destination Equation:
 Tons Surplus sent to Destination = Tons Surplus * \% Sent to Destination

Table 3. Calculations Performed to Quantify the Destinations of U.S. Farm Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Destination Breakdown of Packhouse Losses	WWF Specialty Crop Loss Report ${ }^{6}$	This was the destinations breakdown for the packhouses included in the WWF report (See Appendix G): Donated: 2.60\% Animal feed: 69.67\% Refuse/discards: 27.73\% Trash: 0\%
		Total: 100\%
	\% of Trash that is Landfilled vs Incinerated in Michigan (Biocycle/Columbia University Survey ${ }^{14}$) (See Appendix Z)	\% of Trash that is Landfilled = 92.33\% \% of Trash that is Incinerated = 7.67\% \% Landfilled:
	Breaking "Trash" into Landfill vs Incineration:	= 0\% * 92.33\%
	\% Landfilled = \% Trash * \% of Trash that is Landfilled	\% Incinerated:
	\% Incinerated = \% Trash * \% of Trash that is Incinerated	$\begin{aligned} & =0 \% * 7.67 \% \\ & =0 \% \end{aligned}$
Destination Breakdown of Unsold Buyer Rejections	Expert Interviews	According to expert interviews, this is what happens to buyer rejections that don't get sold via secondary outlets:
		Donated: 33.33\% Animal feed: 33.33\% Refuse/discards: 0\% Trash: 33.33\%
		Total: 100\%
	\% of Trash that is Landfilled vs Incinerated in Michigan (Biocycle/Columbia University Survey ${ }^{14}$) (See Appendix Z)	\% of Trash that is Landfilled = 92.33\% \% of Trash that is Incinerated = 7.67\%
	Breaking "Trash" into Landfill vs Incineration:	$\begin{aligned} & \text { \% Landfilled = 33.33\% * 92.33\% } \\ & =30.8 \% \end{aligned}$
	\% Landfilled = \% Trash * \% of Trash that is Landfilled	\% Incinerated = 33.33\% * 7.67\%
	\% Incinerated = \% Trash * \% of Trash that is Incinerated	= 2.6\%
Tons Not Harvested	See calculation above for Tons Unharvested Total	2,336 total tons unharvested

US Dollars Not Harvested

Tons Donated

US Dollars Donated

Tons Animal Feed

US Dollars Animal Feed

Tons Refuse / Discards

US Dollars Refuse /

 DiscardsTons Landfilled

US Dollars Landfilled

Tons Incineration

US Dollars Incineration

See calculation above for US Dollars Unharvested Total
= Tons Packhouse Losses * \% Donations for Packhouse Losses + Tons Unsold Buyer Rejections * \% Donations for Unsold Buyer Rejections
= US Dollars Packhouse Losses * \% Donations for Packhouse Losses + US Dollars Unsold Buyer Rejections * \% Donations for Unsold Buyer Rejections
= Tons Packhouse Losses * \% Animal feed for Packhouse Losses + Tons Unsold Buyer Rejections * \% Animal feed for Unsold Buyer Rejections
= US Dollars Packhouse Losses * \% Animal feed for Packhouse Losses + US Dollars
Unsold Buyer Rejections * \% Animal feed for Unsold Buyer Rejections
= Tons Packhouse Losses * \% Refuse/
Discards for Packhouse Losses + Tons Unsold Buyer Rejections * \% Refuse/Discards for Unsold Buyer Rejections
= US Dollars Packhouse Losses * \% Refuse/ Discards for Packhouse Losses + US Dollars
Unsold Buyer Rejections * \% Refuse/Discards for Unsold Buyer Rejections

Tons Packhouse Losses * \% Landfilled for Packhouse Losses + Tons Unsold Buyer Rejections * \% Landfilled for Unsold Buyer Rejections
= US Dollars Packhouse Losses * \% Landfilled for Packhouse Losses + US Dollars Unsold Buyer Rejections * \% Landfilled for Unsold Buyer Rejections
= Tons Packhouse Losses * \% Incineration for Packhouse Losses + Tons Unsold Buyer Rejections * \% Incineration for Unsold Buyer Rejections
= US Dollars Packhouse Losses * \% Incineration for Packhouse Losses + US Dollars Unsold Buyer Rejections * \% Incineration for Unsold Buyer Rejections
$\$ 4,242,825$ total unharvested
$=1,076$ tons packhouse losses * 2.60% donated + 93 tons unsold buyer rejections * 33.33\% donated $=59$ tons donated
= \$1,953,524 packhouse losses * 2.60\% donated $+\$ 168,689$ unsold buyer rejections * 33.33\% donated = \$107,009 donated
= 1,076 tons packhouse losses * 69.67\% Animal feed +93 tons unsold buyer rejections

* 33.33\% Animal feed
$=780$ tons Animal feed
= \$1,953,524 packhouse losses * 69.67\%
Animal feed + \$168,689 unsold buyer
rejections * 33.33\% Animal feed =\$1,417,258 Animal feed
$=1,076$ tons packhouse losses * 27.73\% Refuse/Discards + 93 tons unsold buyer rejections * 0\% Refuse/Discards = 298 tons Refuse/Discards
= \$1,953,524 packhouse losses * 27.73\%
Refuse/Discards + \$168,689 unsold buyer rejections * 0\% Refuse/Discards
= \$541,705 Refuse/Discards
$=1,076$ tons packhouse losses * 0%
Landfilled + 93 tons unsold buyer rejections *
30.8\% Landfilled
$=29$ tons Landfilled
= \$1,953,524 packhouse losses * 0\% Landfilled + \$168,689 unsold buyer rejections
* 30.8\% Landfilled
= \$51,912 Landfilled
= 1,076 tons packhouse losses * 0\%
Incineration + 93 tons unsold buyer rejections
* 2.6\% Incineration
$=2.4$ tons Incineration
= \$1,953,524 packhouse losses * 0\%
Incineration + \$168,689 unsold buyer rejections * 2.6% Incineration
$=\$ 4,312$ Incineration

Data Sources and Limitations

Planted and Harvested Acreage, Yield, and Market Price

Raw Data and Documentation:

- https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ USDASurveys_Fruit-TreeCrops.xlsx
- https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ USDASurveys_Vegetables-FieldCrops.xlsx

Each year the USDA National Agricultural Statistics Service conducts grower sampling surveys to estimate acreage, production, market price, and other data for dozens of domestically grown U.S. farm commodities. These surveys include about 60 fruit, vegetable, and nuts commodities. ReFED used the data from these surveys to quantify the planted acreage (bearing acreage for tree crops), harvested acreage, market price, and yield for fruits, vegetables, and nuts by commodity, state, and year back to 2010. States that produce a minor amount of a given commodity are not included in the USDA surveys. For this reason, low-producing states are estimated to have zero food loss and waste on farms for a given commodity even though they may produce and waste a small volume. Once every four years the USDA conducts a more thorough CENSUS, which captures more acreage. ReFED compared USDA Survey and USDA CENSUS data for 2017 and 2012 and found a discrepancy of only $\sim 5 \%$ of total national acreage for the fruits, vegetables, and nuts commodities included in this analysis.

Never Harvested (Walk-by) Causes

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ NeverHarvestedCauses.xlsx

The USDA Risk Management Agency (RMA) crop insurance claim dataset from the Federal Crop Insurance Corporation (FCIC) ${ }^{13}$ details the total number of acres claimed as loss due to various causes by state, commodity, and year. ReFED used this data to estimate the causal breakdown of why fields are left unharvested each year by commodity and by state (see Appendix D for example data). Although market surplus or demand variation has led to spikes in "Decline in price" claims for specific commodities in certain years (e.g. cherries in 2018), the vast majority of claims are due to bad weather or natural disasters. "Decline in price" claims are much more common for lower value row crops such soybeans and corn, which were out of scope for this analysis and are therefore not reflected in the data. There is some concern that this data source may not be a representative way to quantify the percentage of produce walk-by fields that occur due to market dynamics (e.g., Decline in price claims), because many growers do not place insurance claims when this happens. However, because walk-by fields already represent such a small portion of surplus ($\sim 3 \%$) and weather events are the dominant driver of walkby losses, any underestimation of market dynamics that may occur becomes negligible. One important limitation of this dataset, though, is that it groups together most lower volume crops into an "All Other Crops" category. ReFED used this data and assumed that the causal breakdown of walk-by losses is the same across these lower volume crop types.

Maturity of Fields Never Harvested

ReFED was unable to identify any publicly available data sources that quantify the percentage of walkby fields (fields that are planted and never harvested) that reach maturity or start bearing edible fruit,
so this number was assumed to be 50%. This number is needed to quantify the amount of yield left unharvested in these fields. ReFED used USDA Survey data to quantify the number of walk-by acres by subtracting the number of acres harvested from the number of acres planted. In order to estimate the amount of yield left unharvested, average yield per acre from harvested acreage was multiplied by the estimated percent maturity and then multiplied by the number of walk-by acres.

Yield Left Behind After Harvest

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ YieldLeftBehindAfterHarvest.xIsx

Multiple university case studies from NC State ${ }^{3,4}$, UC Santa Clara5, and WWF ${ }^{6}$ were used to quantify the amount of yield that is left behind after harvest crews have finished harvesting the field. Because these were one-time studies conducted in specific geographies (e.g., California, North Carolina, Florida, New Jersey, and Idaho) for a limited number of commodities, ReFED had to use extensive proxy commodity and geography assignments to model yield left behind for all crops in all states. These estimates also had to be reused year over year for the modeling.

Processing Rates Versus Fresh Market

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ PackhouseLossRates.xlsx

ReFED used data from USDA surveys on processing versus fresh market tons harvested to quantify the percentage of a given commodity that was produced for the processing market in a particular state and year. ReFED used this data along with other datasets to estimate the amount of each commodity that gets sent to produce packhouses as opposed to being sent for processing in the processing market.

Field Packing Rates

Raw Data and Documentation: https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ PackhouseLossRates.xlsx

ReFED researched several prominent agriculture websites ${ }^{7,8,9,10,11,12}$ and consulted experts at the University of California Davis to estimate the percentage of each fresh market commodity that is packed in the field as opposed to being sent to a packhouse. Most commodities were estimated to be 0\% or 100\% field packed, although a few commodities were estimated to be 50-75\% field packed. See Appendix B or the documentation for a detailed list. ReFED combined this data with harvest tonnages from the USDA Surveys to estimate the amount of each commodity that gets sent to produce packhouses for packing.

Packhouse Loss Rates

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ PackhouseLossRates.xlsx

ReFED used data from the WWF Specialty Crop Losses Report ${ }^{6}$ to quantify the percent of produce packhouse volumes that are not utilized (e.g., culls or throws). For the packhouses included in the study, $14.8 \%, 14.2 \%$, and 2.6% of incoming produce was culled for tomatoes, peaches, and potatoes respectively. Because this was a one-time study conducted for a limited number of commodities, ReFED had to use extensive proxy commodity assignments and reused these estimates for every U.S. state year over year for the modeling.

Before deciding on this data source for estimating packhouse losses, ReFED explored data available from USDA surveys on weight of commodities not sold. This was recently added to the USDA Survey data collection process in 2016. We were unable to use this data source for the time being because this newly collected information is sparsely reported by growers to date. However, when and if growers start reporting these numbers in larger quantities, ReFED recommends using the USDA Survey data to track the amount of produce harvested but not sold (e.g., packhouse losses), because the infrastructure is already in place to get updated numbers for specific commodities and states on an annual basis for statistically significant sample sizes.

Buyer Rejection Rates

Based on expert interviews, ReFED assumed that 2% of all produce and nuts shipments are rejected by the quality assurance teams of produce buyers. ReFED used USDA Survey production tonnages of domestically grown produce and nuts to estimate the weight of each commodity delivered to domestic buyers. In reality this overestimates buyer rejections for commodities that are heavily exported (e.g., almonds) and underestimates buyer rejections for commodities that are grown outside of the U.S (e.g., bananas). Future iterations of this model should address this issue by accounting for the impact that imports and exports have on total domestic delivery tonnages. Based on the USDA Food Availability Dataset ${ }^{15}$ which lists production, import, and export tonnages, ReFED estimates that the current buyer rejection tonnages of Farm product in the Food Waste Monitor are about 20\% underestimated for fruits and vegetables and about 180\% overestimated for nuts. This issue is exacerbated for specific commodities with significant trade deficits (e.g., bananas are grown almost exclusively outside of the U.S.). However, since the current model estimates that buyer rejections only represent about 3\% of total farm surplus, this issue is unlikely to have a significant impact on the overall Farm surplus numbers.

Left Behind After Harvest Causes

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ LeftBeindAfterHarvestCauses.xlsx

Only two public case studies are available that quantify the reasons why produce is left behind after harvest, both from NC State ${ }^{3,4}$. More research is needed in this area, especially among tree crops as the NC State studies only looked at field crops. Because these were one-time studies conducted in North Carolina for a limited number of commodities, ReFED had to use extensive proxy commodity assignments and reuse these estimates for every U.S. state year over year for the modeling. More sustainable, continuously updated data collection methods are needed to track these causes over time going forward.

Packhouse Loss Causes

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ PackhouseLossCauses.xlsx

ReFED used data from the WWF Specialty Crop Losses Report ${ }^{6}$ to quantify the reasons why postharvest produce is culled. For the two commodities that included cause data in the report (peaches and tomatoes), over 75\% of the produce culled in the packing houses was because it was deemed inedible (e.g., cracks, bruises, deterioration) and the remaining portion was culled because it did not meet buyer specifications (e.g., second grades). ReFED believes these numbers to be directionally correct, but more research is needed to confirm that this data is consistent across a larger sample size, different commodity types, different packhouses, geographies, and different times of the year.

Packhouse Loss Destinations

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ PackhouseLossDestinations.xIsx

ReFED used data from the WWF Specialty Crop Losses Report ${ }^{6}$ to quantify the percentage breakdown of destinations for produce that gets culled at packhouses. ReFED believes these numbers to be directionally correct, but more research is needed to confirm that this data is consistent across a larger sample size, different commodity types, different packhouses, geographies, and different times of the year.

The portion sent to "trash" was further broken down into landfill versus incineration on a state-by-state basis using data from BioCycle's 2010 "State of Garbage in America" survey", which was conducted in partnership with the Earth Engineering Center of Columbia University ${ }^{14}$. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED reused these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Buyer Rejection Destinations

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ BuyerRejectionDestinations.xIsx

Based on expert interviews, ReFED assumed the following destinations breakdown for produce that gets rejected by buyers: 25% sold to discount outlets, 25% trash, 25% donated, and 25% animal feed. The portion sold to discount outlets was subtracted from the surplus total. Better data is needed in this area to replace these anecdotal estimates.

The portion sent to "trash" was further broken down into landfill versus incineration on a state-by-state basis using data from BioCycle's 2010 "State of Garbage in America" survey ${ }^{16}$, which was conducted in partnership with the Earth Engineering Center of Columbia University ${ }^{14}$. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED reused these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Data Quality Evaluation

This rubric is designed to evaluate the quality of how each data source was utilized by ReFED to estimate food loss and waste. It is not meant to rate the quality of the study itself. See Appendix AA for more information about the ReFED Data Quality Rubric.

Table 4. Data Quality Evaluation for Food Waste Monitor Farm Sector

DATA	SOURCE	DATA QUALITY SCORE						
		츨 $\overline{\text { m }}$ 믄 쓴					SCORE	WEIGHT
FARM SURPLUS DATA								
Acres Planted	USDA Surveys ${ }^{2}$	5	5	5	5	5	Very High $25 / 5=5.0$	2\%
Acres Harvested	USDA Surveys ${ }^{2}$	5	5	5	5	5	Very High $25 / 5=5.0$	13\%
US Dollars Harvested	USDA Surveys ${ }^{2}$	5	5	5	5	5	Very High $25 / 5=5.0$	13\%
Tons Harvested	USDA Surveys ${ }^{2}$	5	5	5	5	5	Very High $25 / 5=5.0$	13\%
\% Maturity of Fields Never Harvested	ReFED Assumption	1	1	1	1	1	Very Low $5 / 5=1.0$	1\%
\% Yield Left Behind After Harvest	Farm Case Studies ${ }^{3,4,5,6}$	5	1	1	3	2	Low $12 / 5=2.4$	40\%
Processing Rates Versus Fresh Market	USDA Surveys ${ }^{2}$	5	5	5	5	5	Very High $25 / 5=5.0$	5\%
Field Packing Rates for Fresh Market	Public Agriculture Websites ${ }^{7,8,9,10,11,12}$	2	1	1	5	3	Low $12 / 5=2.4$	5\%
\% Packhouse Loss Rates	WWF Specialty Crop Losses Report ${ }^{6}$	5	1	1	2	1	Very Low $10 / 5=2.0$	5\%
\% Buyer Rejections	Expert Interviews	1	1	1	1	1	Very Low $5 / 5=1.0$	3\%
$\begin{array}{r} 5.0 * 2 \%+5.0 * 13 \%+5.0 * 13 \%+5.0 * 13 \%+1.0 * 1 \%+2.4 * 40 \%+5.0 * 5 \%+2.4 * 5 \%+2.0 * \\ 5 \%+1.0 * 3 \%=3.52 \end{array}$							Medium	
FARM CAUSES DATA								
\% Loss due to Cause for walk-by fields	USDA RMA Crop Insurance ${ }^{13}$	5	5	5	3	5	High $23 / 5=4.6$	3\%

DATA	SOURCE	DATA QUALITY SCORE						
		를 $\overline{\text { m }}$ 品 쑹		$\begin{aligned} & \text { u } \\ & \text { C } \\ & \text { بiI } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 쓸 } \\ & \stackrel{1}{2} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		SCORE	WEIGHT
\% Loss due to Cause for yield left behind after harvest	Farm Case Studies ${ }^{3,4,6,6}$	5	1	1	2	1	Low $10 / 5=2.0$	87\%
\% Loss due to Cause for packhouse losses	WWF Specialty Crop Losses Report ${ }^{6}$	5	1	1	1	1	Very Low $9 / 5=1.8$	10\%
		4.6 * 3\% + 2.0 * $87 \%+1.8$ * 10\% = 2.06					Low	
FARM DESTINATIONS DATA								
Acres Planted	USDA Surveys	5	5	5	5	5	Very High $25 / 5=5.0$	2\%
Acres Harvested	USDA Surveys	5	5	5	5	5	Very High $25 / 5=5.0$	13\%
US Dollars Harvested	USDA Surveys	5	5	5	5	5	Very High $25 / 5=5.0$	13\%
Tons Harvested	USDA Surveys	5	5	5	5	5	Very High $25 / 5=5.0$	13\%
\% Maturity of Fields Never Harvested	ReFED Assumption	1	1	1	1	1	Very Low $5 / 5=1.0$	1\%
\% Yield Left Behind After Harvest	Farm Case Studies	5	1	1	3	2	Low $12 / 5=2.4$	40\%
\% of packhouse losses sent to each destination	WWF Specialty Crop Losses Report ${ }^{6}$	5	1	1	1	1	Very Low $9 / 5=1.8$	9\%
\% of trash landfilled vs incinerated	Biocycle/Columbia University Survey ${ }^{14}$	5	2	4	1	5	Medium $17 / 5=3.4$	1\%
\% Unsold Buyer Rejections sent to each destination	Expert Interviews	1	1	1	1	1	Very Low $5 / 5=1.0$	3\%
$\begin{array}{r} 5.0 * 2 \%+5.0 * 14 \%+5.0 * 14 \%+5.0 * 14 \%+1.0 * 1 \%+2.4 * 42 \%+1.8 * 9 \%+3.4 * 1 \%+1.0 \text { * } \\ 3 \%=3.44 \end{array}$							Medium	

INSIGHTS ENGINE FOOD WASTE MONITOR

2020 MANUFACTURING METHODOLOGY
© ReFED

MANUFACTURING METHODOLOGY

Scope Boundary

The following diagram communicates the scope boundary as aligned with the Food Loss and Waste Accounting and Reporting Standard ${ }^{1}$. Note that ReFED's analysis also includes food sent to donations, although donations are not considered a destination within the Standard.

*NOTES

- "Food Donation" has been added as a Destination
- "Biomaterial Processing is referred to as "Industrial Uses" in our model
- "Co/anaerobic digestion" is referred to as "Anaerobic digestion" in our model
- "Controlled Combustion" is referred to as "Incineration" in our model
- "Refuse/discards" is referred to as "Dumping" in our model

Calculations

Surplus Food Calculations

```
Master Unsold Food Equation:
Tons Unutilized Ingredients
+ Tons Finished Product not Shipped
+ Tons Buyer Rejections
```

= Tons Unsold Food
In ReFED's data model, the following calculations are repeated for every state, year, and manufacturing food type before any aggregation is done.

Table 5. Calculations Performed to Quantify U.S. Manufacturing Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE

DATA ITEM

EXAMPLE

$=\$ 5,226,320,602$ retail value shipped from all U.S. manufacturers * 8.06% of employees located in Illinois
$=\$ 421,446,263$ estimated retail value of tortilla manufacturing products shipped from Illinois in 2018
$=1,907,416$ tons shipped from all U.S.
manufacturers * 8.06% of employees located in Illinois
= 153,813 estimated tons of tortilla manufacturing products shipped from Illinois in 2018

According to expert interviews, about 0.5\% of Bread \& Bakery shipments are rejected by buyers
$=(100 \%-0.5 \%) * \$ 421,446,263$ shipped
from Illinois
= \$419,339,031 sold from Illinois
$=(100 \%-0.5 \%)$ * 153,813 tons shipped from Illinois
= 153,043 sold from Illinois
$=\$ 421,446,263$ shipped from Illinois \$419,339,031 sold from Illinois
$=\$ 2,107,231$ buyer rejections
196,556 tons shipped from Illinois - 195,574 tons sold from Illinois
$=769$ tons buyer rejections
Based on expert interviews, ReFED assumed that 25% of product rejected by buyer quality assurance teams ends up being sold via other channels and does not get wasted.
$=769$ tons buyer rejections *(100% - 25% sold via discount outlets)
$=577$ tons unsold buyer rejections
$=577$ tons unsold buyer rejections * \$1.37
per lb * 2,000 lbs per ton
= \$1,580,423 unsold buyer rejections
In the General Mills Tesco Supplier Case study (used as a proxy as no tortilla-specific study was available), 0.26% of manufactured products are finished into a final product but never shipped.

PRODUCT NOT SHIPPED

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

Tons Production	= Tons Shipped / (100\% - \% of Finished Product not Shipped)	$=153,813$ tons shipped from Illinois / (100% - 0.26% of Finished Product not Shipped) $=154,213$ tons Tortilla products production in Illinois
US Dollars Production	= US Dollars Retail Value Shipped / (100\% - \% of Finished Product not Shipped)	$=\$ 421,446,263$ shipped from Illinois / (100% - 0.26% of Finished Product not Shipped) $=\$ 422,544,879$ Tortilla products production in Illinois
Tons Finished Product not Shipped	= Tons Production - Tons Shipped	$=154,213$ Tortilla products production in Illinois - 153,813 tons Tortilla products shipped from Illinois $=401$ tons Tortilla products not shipped
US Dollars Finished Product not Shipped	= US Dollars Production - US Dollars Shipped	$=\$ 422,544,879$ Tortilla products production in Illinois - $\$ 421,446,263$ Tortilla products shipped from Illinois $=\$ 1,098,617$ Tortilla products not shipped
Recipe Tons Ingredient per Ton Finished Product	Multiple Data Sources ${ }^{23,24,2,2,26,2,7,28,2,9,30,31,3,3,3,3,3,3,3,36,37,3,8,39,40,41}$	0.63 tons Out of scope ingredients (e.g., water, gums) per ton finished tortilla products 0.21 tons Flour and meal per ton finished tortilla products 0.01 tons Baking yeast per ton finished tortilla products 0.03 tons Herbs, spices, and seasonings per ton finished tortilla products 0.1 tons Shortening and lard per ton finished tortilla products 0.02 tons Baking milks per ton finished tortilla products
Tons of each Ingredient Utilized in Finished Product	= Tons Production * \% by Weight of each Ingredient	Water and additives are not considered "food" in this methodology. Flour and meal: $=154,213$ tons of tortilla products produced * 0.21 tons Flour and meal per ton finished product $=32,385$ tons Flour and meal utilized Baking yeast: $=154,213$ tons of tortilla products produced * 0.01 tons Baking yeast per ton finished product = 1,542 tons Baking yeast utilized

DATA ITEM

DATA SOURCE OR CALCULATION

Continued from above:
= Tons Production * \% by Weight of each Ingredient

Tons of Ingredients
Unutilized

Ingredient Utilization Rates Tesco Supplier Case Studies ${ }^{21}$
= Tons of Ingredient Utilized * (100% Ingredient Utilization Rate) / Ingredient Utilization Rate

Herbs, spices, and seasonings:
= 154,213 tons of tortilla products produced

* 0.03 tons Herbs, spices, and seasonings per
ton finished product
$=4,626$ tons Herbs, spices, and seasonings utilized

Shortening and lard:
$=154,213$ tons of tortilla products produced

* 0.10 tons Shortening and lard per ton
finished product
$=15,421$ tons Shortening and lard utilized

Baking milks:
= 154,213 tons of tortilla products produced

* 0.02 tons Baking milks per ton finished
product
= 3,084 tons Baking milks utilized
In the Panelto Foods Tesco Supplier Case study (a UK bakery supplier), 87\% of ingredients were utilized

Flour and meal:
= 32,385 tons utilized * (100\% - 87\% utilized) /
87\% utilized
$=4,704$ tons unutilized

Baking yeast:
= 1,542 tons utilized * ($100 \%-87 \%$ utilized) /
87\% utilized
$=224$ tons unutilized

Herbs, spices, and seasonings:
= 4,626 tons utilized * ($100 \%-87 \%$ utilized) /
87\% utilized
= 672 tons unutilized

Shortening and lard:
$=15,421$ tons utilized * ($100 \%-87 \%$ utilized) $/$
87\% utilized
$=2,240$ tons unutilized

Baking milks:
= 3,084 tons utilized * ($100 \%-87 \%$ utilized) /
87\% utilized
= 448 tons unutilized

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

Flour and meal:
$=\$ 0.70$ per Ib average grocery retail price *
(100\% - 26.6\% grocery markup)
$=\$ 0.51$ per lb average wholesale price

Baking yeast:
\$16.55 per lb average grocery retail price * (100\% - 26.6\% grocery markup)
$=\$ 12.15$ per lb average wholesale price

Herbs, spices, and seasonings:
$\$ 14.47$ per lb average grocery retail price *
(100\%-26.6\% grocery markup)
= \$10.62 per lb average wholesale price
Shortening and lard:
$\$ 1.67$ per lb average grocery retail price * (100\%-26.6\% grocery markup)
$=\$ 1.23$ per lb average wholesale price
Baking milks:
$\$ 1.74$ per lb average grocery retail price *
(100\% - 26.6\% grocery markup)
$=\$ 1.28$ per lb average wholesale price

Total Tons Unutilized Ingredients:
$=4,704$ tons Flour and meal unutilized +
224 tons Baking yeast unutilized +672
tons Herbs, spices, and seasonings unutilized
$+2,240$ tons Shortening and lard unutilized +
448 tons Baking milks unutilized
$=8,287$ tons unutilized ingredients

DATA ITEM

US Dollars Unutilized Ingredients

DATA SOURCE OR CALCULATION

Flour and meal:
$=4,704$ tons unutilized * 2,000 lbs per ton * $\$ 0.51$ per lb
$=\$ 4,833,492$ unutilized

Baking yeast:
= 224 tons unutilized * 2,000 lbs per ton *
$\$ 12.15$ per lb
$=\$ 5,441,788$ unutilized

Herbs, spices, and seasonings:
= 672 tons unutilized * 2,000 lbs per ton * $\$ 10.62$ per lb
= \$14,273,596 unutilized

Shortening and lard:
$=2,240$ tons unutilized * 2,000 lbs per ton * $\$ 1.23$ per lb
= \$5,491,109 unutilized
Baking milks:
$=448$ tons unutilized * 2,000 lbs per ton *
$\$ 1.28$ per lb
$=\$ 1,144,255$ unutilized

Total US Dollars Unutilized Ingredients:
$=\$ 4,833,492$ Flour and meal unutilized

+ \$5,441,788 Baking yeast unutilized +
$\$ 14,273,596$ Herbs, spices, and seasonings
unutilized $+\$ 5,491,109$ Shortening and
lard unutilized + \$1,144,255 Baking milks unutilized
= \$31,184,241 unutilized ingredients

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

Flour and meal:
$=4,704$ tons Flour and meal unutilized +
32,385 tons Flour and meal utilized
$=37,088$ tons Flour and meal purchased

Baking yeast:
$=224$ tons Baking yeast unutilized + 1,542
tons Baking yeast utilized
$=1,766$ tons Baking yeast purchased
Herbs, spices, and seasoning:
$=672$ tons Herbs, spices, and seasonings unutilized $+4,626$ tons Herbs, spices, and seasonings utilized
= 5,298 tons Herbs, spices, and seasonings purchased

Shortening and lard:
$=2,240$ tons Shortening and lard unutilized +
15,421 tons Shortening and lard utilized
$=17,661$ tons Shortening and lard purchased

Baking milks
$=448$ tons Baking milks unutilized $+3,084$
tons Baking milks utilized
= 3,532 tons Baking milks purchased
Flour and meal:
$=37,088$ tons Flour and meal purchased *
$2,000 \mathrm{lbs}$ per ton * $\$ 0.51$ per lb
= \$38,112,139 Flour and meal purchased
Baking yeast:
$=1,766$ tons Baking yeast purchased * 2,000
lbs per ton * $\$ 12.15$ per lb
= \$42,908,565 Baking yeast purchased

Herbs, spices, and seasonings:
= 5,298 tons Herbs, spices, and seasonings purchased * 2,000 lbs per ton * $\$ 10.62$ per lb $=\$ 112,547,481$ Herbs, spices, and seasonings

US Dollars Ingredients Purchased
= Tons Ingredients Purchased * 2,000 lbs per ton * Wholesale Price per Lb
purchased

Shortening and lard:
$=17,661$ tons Shortening and lard purchased

* 2,000 lbs per ton * $\$ 1.23$ per lb
= \$43,297,464 Shortening and lard purchased
Baking milks:
= 3,532 tons Baking milks purchased * 2,000
lbs per ton * $\$ 1.28$ per lb
$=\$ 9,022,466$ Baking milks purchased

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Tons Unsold Food	= Tons Unutilized Ingredients + Tons Unshipped Product + Tons Unsold Buyer Rejections	$=8,287$ tons unutilized ingredients +401 tons finished product not shipped +577 tons unsold buyer rejections = 9,265 tons unsold Tortilla products manufactured in Illinois in 2018
US Dollars Unsold Food	= US Dollars Unutilized Ingredients + US Dollars Unshipped Product + US Dollars Unsold Buyer Rejections	= \$31,184,241 unutilized ingredients + \$1,098,617 finished product not shipped + \$1,580,423 buyer rejections $=\$ 33,863,281$ unsold Tortilla products in Illinois in 2018
Tons Supply	= Sum of Ingredient Tons Purchased	$=37,088$ tons Flour and meal purchased + 1,766 tons Baking yeast purchased + 5,298 tons Herbs, spices, and seasonings purchased $+17,661$ tons Shortening and lard purchased $+3,532$ tons Baking milks purchased = 65,346 tons Tortilla product ingredients purchased in Illinois in 2018
US Dollars Supply	= Sum of Ingredient US Dollars Purchased	= \$38,112,139 Flour and meal purchased + \$42,908,565 Baking yeast purchased + \$112,547,481 Herbs, spices, and seasonings purchased + \$43,297,464 Shortening and lard purchased + \$9,022,466 Baking milks purchased
		= \$245,888,115 Tortilla product ingredients purchased in Illinois in 2018

Cause Calculations

Master Cause Equations:

Tons Unutilized Ingredients due to Cause = Tons Unutilized Ingredients * \% Unutilized Ingredients due to Cause
Tons Unshipped Product due to Cause = Tons Unshipped Product * \% Unshipped due to Cause Tons Buyer Rejections = Tons Shipped * Buyer Rejection Rate

Table 6. Calculations Performed to Quantify the Causes of U.S. Manufacturing Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
UNUTILIZED INGREDIENTS		
\% Unutilized due to Cause	Tesco Supplier Case Studies ${ }^{21}$	ReFED assumed that 100\% of unutilized ingredients were Byproducts \& Production Line Waste after reviewing the supplier case studies.
Tons Unutilized Ingredients due to Cause	= Tons Unutilized Ingredients * \% Unutilized due to Cause	Tons unutilized due to Byproducts \& Production Line Waste: = 8,287 tons unutilized ingredients * 100\% unutilized due to Byproducts \& Production Line Waste $=8,287 \text { tons }$
US Dollars Unutilized Ingredients due to Cause	= US Dollars Unutilized Ingredients * \% Unutilized due to Cause	US Dollars of ingredients unutilized due to Byproducts \& Production Line Waste: = \$31,184,241 unutilized ingredients * 100\% unutilized due to Byproducts \& Production Line Waste $=\$ 31,184,241$
UNSHIPPED PRODUCT		
\% Unshipped due to Cause	ReFED was unable to find any data sources that quantify the breakdown of the causes of unshipped product (e.g., misprints versus discontinued product), so this cause was not broken down any further.	100\% due to 'Unshipped Finished Product'
Tons Unshipped Product due to Cause	= Tons Unshipped Product * \% Unshipped due to 'Unshipped Finished Product'	$\begin{aligned} & =401 \text { tons unshipped Tortilla products * } \\ & 100 \% \\ & =401 \text { tons } \end{aligned}$
US Dollars Unshipped Product	= US Dollars Unshipped Product * \% Unshipped due to 'Unshipped Finished Product'	$\begin{aligned} & =\$ 1,098,617 \text { unshipped Tortilla products * } \\ & 100 \% \\ & =\$ 1,098,617 \end{aligned}$
BUYER REJECTIONS		
Tons Unsold Buyer Rejections	See calculation above for Tons Buyer Rejections	$=577$ tons unsold buyer rejections
US Dollars Unsold Buyer Rejections	See calculation above for US Dollars Unsold Buyer Rejections	= \$1,580,423 unsold buyer rejections

Destination Calculations

```
Master Destination Equations:
Tons Unutilized Ingredients sent to Destination = Tons Unutilized Ingredients * % Unutilized Ingredients
sent to Destination
Tons Unshipped Product sent to Destination = Tons Unshipped Product * % Unshipped Product sent to
Destination
Tons Buyer Rejections sent to Destination = Tons Buyer Rejections * % Buyer Rejections sent to
Destination
```

Table 7. Calculations Performed to Quantify the Destinations of U.S. Manufacturing Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Destination Breakdown of Unutilized Ingredients (See Appendix J)	Northstar Recycling ${ }^{42}$	This was the destinations breakdown for Bakery manufacturers based on aggregated data from NorthStar Recycling: Donated: 1\% Animal feed: 99\% Trash: 0\% \qquad Total: 100\%
	\% of Trash that is Landfilled vs Incinerated in Illinois (Biocycle/ Columbia University Survey ${ }^{14}$) (See Appendix Z)	\% of Trash that is Landfilled $=100.00 \%$ \% of Trash that is Incinerated $=0.00 \%$
	Breaking "Trash" into Landfill vs Incineration: \% Landfilled = \% Trash * \% of Trash that is Landfilled \% Incinerated = \% Trash * \% of Trash that is Incinerated	\% Landfilled: $\begin{aligned} & =100 \% \text { * } 0 \% \\ & =0 \% \end{aligned}$ \% Incinerated" = 0\% * 0\% = 0\%

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

This was the destinations breakdown for Bakery manufacturers based on aggregated data from NorthStar Recycling:

Donated: 1\%
Animal feed: 99\%
Trash: 0\%

Total: 100\%
\% of Trash that is Landfilled = 100.00\%
$\%$ of Trash that is Incinerated $=0 \%$

$$
\begin{aligned}
& \text { \% Landfilled: } \\
& =100 \% \text { * 0\% } \\
& =0 \% \\
& \text { \% Incinerated: } \\
& =0 \% \text { * 0\% } \\
& =0 \%
\end{aligned}
$$

\% Landfilled = \% Trash * \% of Trash that is Landfilled
\% Incinerated = \% Trash * \% of Trash that is Incinerated

EXAMPLE

	ReFED estimated the following breakdown of buyer rejections based on expert interviews: Resale: 25\% (excluded from surplus) Donations: 25\%
	Animal feed: 25\%
	Trash: 25\%

Tons Donated	Note: means Unutilized Ingredients means Unshipped Finished Product means Buyer Rejections	* $1 \%+577$ tons unsold buyer rejections * 33.33\% $=278$ tons Breads \& Bakery products donated
Tons Animal Feed	= Tons Unutilized Ingredients * \% Animal Feed ${ }_{\mathrm{UI}}+$ Tons Unshipped Product * \% Animal Feed ${ }_{\text {up }}$ + Tons Unsold Buyer Rejections * \% Animal Feed $_{\text {BR }}$	$=8,287$ tons unutilized ingredients * 99% + 401 tons unshipped Tortilla products * $99 \%+577$ tons unsold buyer rejections * 33.33\% $=8,795$ tons Breads \& Bakery products sent to animal feed
Tons Anaerobic Digestion	= Tons Unutilized Ingredients * \% Anaerobic Digestion ${ }_{U I}+$ Tons Unshipped Product * \% Anaerobic Digestion ${ }_{\text {UP }}$ + Tons Unsold Buyer Rejections * \% Anaerobic Digestion ${ }_{B R}$	For this particular example, anaerobic digestion was zero.

= Tons Unutilized Ingredients * \%

Tons Composted

Tons Industrial uses

Tons Land Application

	Buyer Rejections * \% Land Application $_{\text {BR }}$
	$=$ Tons Unutilized Ingredients * \%
Sewer	

= Tons Unutilized Ingredients * \% Incinerated ${ }_{U 1}+$ Tons Unshipped Product * \% Incinerated ${ }_{\text {UP }}$ + Tons Buyer Rejections * \% Incinerated ${ }_{\text {BR }}$
= US Dollars Unutilized Ingredients * \% Donations ${ }_{\text {UI }}+$ US Dollars Unshipped Product * \% Donations up US Dollars Unsold Buyer Rejections * \% Donations ${ }_{\text {BR }}$
= US Dollars Unutilized Ingredients * \% Animal Feed ${ }_{U 1}+$ US Dollars Unshipped Product * \% Animal Feed ${ }_{\text {up }}$ + US Dollars Unsold Buyer Rejections * \% Animal Feed $_{\text {BR }}$

For this particular example, anaerobic digestion was zero.

For this particular example, anaerobic digestion was zero.
= 8,287 tons unutilized ingredients * 0\%
+401 tons unshipped Tortilla products

* $0 \%+577$ tons buyer rejections *
33.33\%
$=192$ tons Tortilla products sent to landfill
= 8,287 tons unutilized ingredients * 0\%
+ 401 tons unshipped Tortilla products
* $0 \%+577$ tons unsold buyer rejections
* 0\%
= 0 tons Tortilla products sent to incineration
$=\$ 31,184,241$ unutilized ingredients
* $1 \%+\$ 1,098,617$ unshipped Tortilla
products * $1 \%+\$ 1,580,423$ unsold
buyer rejections * 33.33\%
= \$846,355 Tortilla products donated
$=\$ 31,184,241$ unutilized ingredients * $99 \%+\$ 1,098,617$ unshipped Tortilla products * 99\% + \$1,580,423 unsold buyer rejections * 33.33\% $=\$ 32,490,012$ Tortilla products sent to animal feed

EXAMPLE

= US Dollars Unutilized Ingredients * \% Anaerobic Digestion + US Dollars

US Dollars Anaerobic Digestion

US Dollars Industrial uses

US Dollars Land Application

US Dollars Sewer

US Dollars Landfilled

US Dollars Incinerated

Unshipped Product * \% Anaerobic Digestion $_{\text {UP }}$ + US Dollars Unsold Buyer Rejections * \% Anaerobic Digestion ${ }_{B R}$
= US Dollars Unutilized Ingredients * \% Composted ${ }_{U I}+$ US Dollars Unshipped $^{\text {U }}$ Product * \% Composted ${ }_{\mathrm{UP}}$ + US Dollars Buyer Rejections * \% Composted $_{\text {BR }}$
= US Dollars Unutilized Ingredients * \% Industrial uses ${ }_{U 1}+$ US Dollars Unshipped Product * \% Industrial uses ${ }_{\mathrm{UP}}$ + US Dollars Unsold Buyer Rejections * \% Industrial uses BR
= US Dollars Unutilized Ingredients

* \% Land Application ${ }_{\mathrm{UI}}$ + US Dollars

Unshipped Product * \% Land Application ${ }_{\mathrm{Up}}+$ US Dollars Buyer Rejections * \% Land Application ${ }_{B R}$
= US Dollars Unutilized Ingredients * \% Sewer $_{\mathrm{UI}}$ + US Dollars Unshipped Product * \% Sewer ${ }_{\text {UP }}$ + US Dollars Unsold Buyer Rejections * \% Sewer ${ }_{\text {BR }}$
= US Dollars Unutilized Ingredients *
\% Dumping + US Dollars Unshipped Product * \% Dumping ${ }_{\text {UP }}$ + US Dollars Unsold Buyer Rejections * \% Dumping ${ }_{\text {BR }}$
= US Dollars Unutilized Ingredients * \% Landfilled ${ }_{\text {UI }}+$ US Dollars Unshipped $^{\text {L }}$ Product * \% Landfilled ${ }_{\mathrm{UP}}$ + US Dollars Unsold Buyer Rejections * \% Landfilled ${ }_{B R}$
= US Dollars Unutilized Ingredients * \% Incinerated ${ }_{U I}+$ US Dollars Unshipped Product * \% Incinerated ${ }_{\mathrm{Up}}$ + US Dollars Unsold Buyer Rejections * \% Incinerated $_{\text {BR }}$

For this particular example, anaerobic digestion was zero.

For this particular example, anaerobic digestion was zero.
$=\$ 31,184,241$ unutilized ingredients

* 0% + \$1,098,617 unshipped Tortilla products * $0 \%+\$ 1,580,423$ unsold buyer rejections * 33.33\% = \$526,755 Tortilla products sent to landfill
$=\$ 31,184,241$ unutilized ingredients
* $0 \%+\$ 1,098,617$ unshipped Tortilla
products * $0 \%+\$ 1,580,423$ unsold
buyer rejections * 0\%
= \$0 Tortilla products sent to
incineration

Data Sources and Limitations

National Value Shipped

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_NationalValueShipped.xlsx

Each year the U.S. Census Bureau conducts the Annual Survey of Manufactures ${ }^{43}$, which includes the wholesale value of product shipped from manufacturers in addition to many other data points. Every business is categorized into an industry code according to the North America Industry Classification System (NAICS). ReFED used this as the data source to determine the wholesale value of food manufactured in the U.S. on an annual basis. One of the data files specifies the percentage of manufactured food shipments that are indeed food as opposed to non-edible commercial products. This information was used to discount the total shipment values to include only edible food products. Additionally, some of the NAICS codes were too broad for ReFED's purposes (e.g., Seafood processing). ReFED used Nielsen Point-of-sale (POS) data44 in order to estimate the proportion of manufactured meat and seafood products that are fresh versus frozen versus canned, and therefore belong to different ReFED food departments (e.g., Fresh Meat \& Seafood versus Frozen versus Dry Goods respectively).

Retail Markup

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_RetailMargins.xIsx

Each year the U.S. Census Bureau conducts the Annual Retail Trade Survey ${ }^{45}$, which includes gross margins from retail firms broken out by business types including grocery food and beverage stores. ReFED used these gross margins as a proxy for retail markup of manufactured food products. These margins were used to inflate the National Wholesale Value of manufactured food shipments to estimate the equivalent retail value of food shipments. See Appendix H for a list of retail margins over the years.

Retail Price per Lb

Raw Data and Documentation: This is confidential data from Nielsen and cannot be shared.

Nielsen data represents over 85\% coverage of grocery retail sales in the U.S. Each year top U.S. grocery retailers report item level point-of-sale sales data to Nielsen, including information about each item such as the grocery chain where it was sold, the brand name of the product, the food classification (department, category, subcategory), the weight of food and packaging, and many other attributes. ReFED used this data to quantify the retail value and weight of food sold by grocery retailers in the U.S. by year, state, and food type. For more information about the weight data, see U.S. Grocery Retail Dollar-to-Weight Conversion Factors Report ${ }^{19}$.

The accuracy of these estimates is limited to the accuracy of the Nielsen sales and weight data. The weight data for UPC items comes directly from up-to-date product packaging images. For non-UPC items sold in eaches, Nielsen estimates weight using a weight conversion factor (e.g., the average weight of a lemon). For other non-UPC items, Nielsen is reliant on the retailer transaction data to provide the item sale weight units (e.g., lbs of apples sold).

ReFED mapped the Nielsen data to each Bureau of Labor Statistics food manufacturing NAICS code to estimate the national average retail price per lb by food manufacturing code. These prices were then used to estimate the weight of food manufactured and shipped from U.S. manufacturers after the national wholesale values shipped were inflated to equivalent retail values.

Employees

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_Employees.xlsx

Each year the U.S. Census Bureau releases the number of employees working in various industry types in addition to many other data points ${ }^{20}$. Every business is categorized into an industry code according to the North America Industry Classification System (NAICS). ReFED used the number of employees working in each food manufacturing industry type (e.g., Tortilla manufacturing) in each state on an annual basis to allocate national food manufacturing shipments to individual states.

The error in this approach is that the number of employees is not always proportional to the volume of production, but in absence of state-level manufacturing numbers, this was the best approach for estimating state-level food surplus. The result is that the state-level food surplus numbers may be high or low for particular manufacturing types.

Unshipped Product Rates

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_UnshippedProductRates.xIsx

ReFED used data from Tesco supplier food waste case studies ${ }^{21}$ to quantify the percentage of finished manufactured food that does not ultimately get shipped to buyers. ReFED identified specific suppliers to serve as proxies for different manufacturing types (e.g., Panelto Foods case study, a UK bakery manufacturer, was selected as the proxy for U.S. Tortilla manufacturing). The resulting numbers from this approach are consistent with expert interviews with U.S. food manufacturers (all case studies indicated that $<1 \%$ of finished product remains unshipped), so ReFED feels fairly confident in these estimates.

Buyer Rejection Rates

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_BuyerRejectionRates.xlsx

Based on expert interviews, ReFED assumed that 2\% of all manufactured prepared food shipments and 0.5% of all other types of manufactured food are rejected by the quality assurance teams of buyers (note that fresh produce rejections are included in the Farm sector, which were assumed to be 2\%). ReFED used U.S. manufacturing shipments to estimate the weight of each food type delivered to buyers. In reality this overestimates buyer rejections for foods that are heavily exported and undestimates buyer rejections for food types that are manufactured outside of the U.S. Future iterations of this model should address this issue by accounting for imports and exports. Based on data from the USDA

Global Agriculture Trade System ${ }^{46}$ which lists import and export values, ReFED estimates that the current estimated buyer rejection tonnages in the Food Waste Monitor are not significantly affected because the overall U.S. trade deficit of manufactured food is relatively small compared to domestic production volumes. However, for specific foods with significant trade deficits (e.g., chocolate is heavily manufactured outside of the U.S.), this issue is exacerbated.

Recipes

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_RecipesAndUtilizationRates.xlsx

In order to estimate the types of food ingredients and byproducts that are used (and therefore potentially wasted) at food manufacturing plants, ReFED identified a variety of recipe data sources of
 list of recipes and data sources. ReFED aggregated all of the category-level data to a higher level before sharing the data on the Food Waste Monitor as this data is only a rough estimate (e.g., salt and flour both become Dry Goods). ReFED was unable to find recipe data for a few manufacturing types, but these categories only represented 7.57% of value shipped. Unutilized ingredients were estimated to be zero for these categories. See Appendix I for more information.

Ingredient Utilization Rates

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_RecipesAndUtilizationRates.xIsx

ReFED used data from Tesco supplier food waste case studies ${ }^{21}$ to quantify the percentage of purchased ingredients that get utilized in finished product. ReFED identified specific suppliers to serve as proxies for different manufacturing types (e.g., Panelto Foods case study, a UK bakery manufacturer, was selected as the proxy for U.S. Tortilla manufacturing). The resulting numbers from this approach are consistent with expert interviews with U.S. food manufacturers (all case studies indicated that 87-100\% of ingredients are utilized), so ReFED feels fairly confident in these estimates. ReFED was unable to find recipe data for a few manufacturing types (only 7.57% of retail value shipped), so ingredient utilization rates were unnecessary for these categories. See Appendix I for more information.

Wholesale Ingredient Prices

Raw Data and Documentation: This contains confidential data from Nielsen and cannot be shared.
ReFED subtracted average grocery margins ${ }^{45}$ from the Nielsen retail price per lb data ${ }^{19}$ to estimate wholesale prices of each manufactured food ingredient. For example, in 2018 the average retail price of eggs was $\$ 2.00$ per lb. Also in 2018, the average margin for grocery stores was 26.6%. Therefore, ReFED estimated the wholesale price of eggs to be $\$ 1.56$ per lb. The error in this approach is that the grocery margin data is not food type specific. While this approach likely leads to underestimation and overestimation errors for specific food types when quantifying the value of unutilized ingredients, these effects balance each other out in the total sector numbers when all food types are combined.

Unutilized Ingredient Destinations

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_UnutilizedIngredientDestinations.xlsx

ReFED used custom-prepared food waste destinations data from Northstar Recycling ${ }^{42}$ to estimate the destination breakdown of unutilized food manufacturing ingredients by food manufacturing type (See Appendix J). Northstar Recycling is a national waste and recycling company that manages waste for many food manufacturers across the U.S. and Canada. Because Northstar does not manage food waste for any meat processing facilities, ReFED assumed that 100% of unutilized ingredients at meat processing plants were sent to rendering (industrial uses). Additionally, Northstar does not have visibility to food donations data for their clients, so ReFED assumed that 1\% of unutilized ingredients are donated based on data from the 2016 Food Waste Reduction Alliance survey ${ }^{47}$ in which 9 manufacturers responded (6.2% of U.S. market share based on sales). Because these data sources are based on a single year, the data does not provide insight into changes in disposal habits over time.

The portion sent to "trash" was further broken down into landfill versus incineration on a state-by-state basis using data from BioCycle's 2010 "State of Garbage in America" survey" ${ }^{16}$, which was conducted in partnership with the Earth Engineering Center of Columbia University. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED reused these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Unshipped Product Destinations

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_UnshippedProductDestinations.xlsx

ReFED also used the data from Northstar Recycling as described above to estimate the destination breakdown of unshipped finished product by food manufacturing type.

Retail Rejection Destinations

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_RetailRejectionRates.xlsx

Based on expert interviews, ReFED assumed the following destinations breakdown for product that gets rejected by buyers: 25% sold to discount outlets, 25% trash, 25% donated, and 25% animal feed. The portion sold to discount outlets was subtracted from the surplus total. Better data is needed in this area to replace these anecdotal estimates.

The portion sent to "trash" was further broken down into landfill versus incineration on a state-by-state basis using data from BioCycle's 2010 "State of Garbage in America" survey ${ }^{16}$, which was conducted in partnership with the Earth Engineering Center of Columbia University. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED reused these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Data Quality Evaluation

This rubric is designed to evaluate the quality of how each data source was utilized by ReFED to estimate food loss and waste. It is not meant to rate the quality of the study itself. See Appendix AA for more information about the ReFED Data Quality Rubric.

Table 8. Data Quality Evaluation for Food Waste Monitor Manufacturing Sector

DATA	SOURCE	DATA QUALITY SCORE						
				u \mathbf{u} $\mathbf{1 1}$ 8 8			SCORE	WEIGHT
MANUFACTURING SURPLUS FOOD								
National US Dollars Wholesale Value Shipped	U.S. Census Bureau Annual Survey of Manufactures ${ }^{17}$	5	5	5	5	3	High $23 / 5=4.6$	15\%
Retail Markup	U.S. Census Bureau Annual Retail Trade Survey ${ }^{18}$	5	5	5	1	3	Medium $19 / 5=3.8$	15\%
Retail Price per Lb	U.S. Grocery Retail Dollar-to-Weight Conversion Factors Report ${ }^{19}$	4	5	5	5	3	High $22 / 5=4.4$	15\%
Employees	U.S. Bureau of Labor Statistics Employee Levels ${ }^{20}$	5	5	5	5	5	Very High $25 / 5=5.0$	15\%
Buyer Rejection Rates	Expert Interviews	1	1	1	3	3	Very Low $9 / 5=1.8$	5\%
Unshipped Product Rates	Tesco Supplier Case Studies ${ }^{21}$	3	1	1	3	1	Very Low $9 / 5=1.8$	5\%
Recipes	Multiple Data Sources $23,24,25,26,27,28,29,30,31,32,33,34,35,36,37$, $38,39,40,41$	1	1	1	5	1	Very Low $9 / 5=1.8$	10\%
Ingredient Utilization Rates	Tesco Supplier Case Studies ${ }^{21}$	3	1	1	3	1	Very Low $9 / 5=1.8$	20\%
MANUFACTURING CAUSES DATA								
Ingredient Utilization Rates	Tesco Supplier Case Studies ${ }^{21}$	3	1	1	3	1	Very Low $9 / 5=1.8$	80\%
Unshipped Product Rates	Tesco Supplier Case Studies ${ }^{21}$	3	1	1	3	1	Very Low $9 / 5=1.8$	10\%
Buyer Rejection Rates	Expert Interviews	1	1	1	3	3	Very Low $9 / 5=1.8$	10\%
		1.8 * $80 \%+1.8 * 10 \%+1.8 * 10 \%=1.8$					Very Low	

DATA	SOURCE	DATA QUALITY SCORE						
					$\begin{aligned} & \text { u } \\ & \stackrel{1}{l} \\ & 0 \\ & 0 \\ & \hline \mathbf{O} \end{aligned}$		SCORE	WEIGHT
MANUFACTURING DESTINATIONS DATA								
\% Destinations Breakdown of Unutilized Ingredients	Northstar Recycling ${ }^{42}$ (See Appendix J)	4	1	2	1	3	Low $11 / 5=2.2$	78\%
\% Destinations Breakdown of Unshipped Finished Product	Northstar Recycling ${ }^{42}$ (See Appendix J)	1	1	1	3	3	Very Low $9 / 5=1.8$	8\%
\% Destinations Breakdown of Buyer Rejections	Expert Interviews	1	1	1	1	3	Very Low $7 / 5=1.4$	8\%
\% of Trash Landfilled vs Incinerated	Biocycle/Columbia University Survey ${ }^{14}$	5	2	4	1	5	Medium $17 / 5=3.4$	6\%
2.2 * 78\% + 1.8 * 8\% + 1.4 * 8\% + 3.4 * 6\% = 2.2							LOW	

RETAIL METHODOLOGY

Scope Boundary

The following diagram communicates the scope boundary as aligned with the Food Loss and Waste Accounting and Reporting Standard ${ }^{1}$. Note that ReFED's analysis also includes food sent to donations, although donations are not considered a destination within the Standard.

*NOTES

- "Food Donation" has been added as a Destination
- "Biomaterial Processing is referred to as "Industrial Uses" in our model
- "Co/anaerobic digestion" is referred to as "Anaerobic digestion" in our model
- "Controlled Combustion" is referred to as "Incineration" in our model
- "Refuse/discards" is referred to as "Dumping" in our model

Calculations

Unsold Food Calculations

Master Unsold Food Equation:

Tons Unsold Food = Tons Purchased by Retailers - Tons Sold

In ReFED's data model, the following calculations are repeated for every state, year, and grocery retail food category before any aggregation is done.

Table 9. Calculations Performed to Quantify U.S. Retail Surplus Food Surplus

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
US Dollars Sold	Nielsen Retail Point-of-Sale (POS) Data ${ }^{44}$	\$16,095,997 tomatoes sold by grocery retailers in Arkansas in 2019
Tons Sold	Nielsen Retail Point-of-Sale (POS) Data ${ }^{44}$	4,507 tons tomatoes sold by grocery retailers in Arkansas in 2019
Unsold Food Rate	USDA Supermarket Shrink Estimates for ERS Loss-Adjusted Food Availability Data (LAFA) ${ }^{15,48}$ Unsold food rates from the FMI Supermarket Security and Loss Prevention Report ${ }^{49}$ were used for categories not covered by the USDA LAFA study See Appendix K and L for unsold food rates	According to USDA LAFA study, 14.47\% by weight of fresh tomatoes goes unsold
Tons Purchased by Retailers	= Tons Sold / (100\% - Unsold Food Rate)	$\begin{aligned} & =4,507 \text { tons sold } /(100 \%-14.47 \%) \\ & =5,270 \text { tons purchased by retailers } \end{aligned}$
US Dollars Purchased by Retailers	= US Dollars Sold / (100\% - Unsold Food Rate)	$\begin{aligned} & =\$ 16,095,997 \text { sold } /(100 \%-14.47 \%) \\ & =\$ 18,818,730 \text { retail value purchased from } \\ & \text { suppliers } \end{aligned}$
Tons Unsold	= Tons Purchased by Retailers - Tons Sold	$=5,270$ tons purchased $-4,507$ tons sold $=762$ tons unsold
US Dollars Unsold	= US Dollars Purchased - US Dollars Sold	$\begin{aligned} & =\$ 18,818,730 \text { retail value purchased - } \\ & \$ 16,095,997 \text { sold } \\ & =\$ 2,722,733 \text { unsold } \end{aligned}$

Cause Calculations

Master Cause Equation:
Tons Unsold Food due to Cause = Tons Unsold Food * \% Unsold Food due to Cause

Table 10. Calculations Performed to Quantify the Causes of U.S. Retail Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	
		\% Breakdown of retail unsold food causes for
Produce:		

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE

Destination Calculations

Master Destination Equation:
Tons Unsold Food sent to Destination ${ }^{\prime}=$ Tons Unsold Food * \% Unsold Food Sent to Destination

Table 11. Calculations Performed to Quantify the Destinations of U.S. Retail Surplus Food

| DATA ITEM | DATA SOURCE OR CALCULATION | |
| :--- | :--- | :--- | :--- |

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Tons Land application	= Tons Surplus * \% Land application	$=762$ tons tomato surplus * 1.17% land application $=9$ tons tomatoes sent to land application
Tons Sewer	= Tons Surplus * \% Sewer	$=762$ tons tomato surplus * 0% disposed down the drain $=0$ tons tomatoes disposed via sewer
Tons Landfilled	= Tons Surplus * \% Landfilled	$=762$ tons tomato surplus * 33.83% landfilled $=258$ tons tomatoes landfilled
Tons Incineration	= Tons Surplus * \% Incineration	$=762$ tons tomato surplus * 0\% incinerated $=0$ tons tomatoes incinerated
US Dollars Donated	= US Dollars Surplus * \% Donated	$=\$ 2,722,733$ US dollars tomato surplus * 19.1\% donated = \$520,042 US dollars tomatoes donated
US Dollars Animal Feed	= US Dollars Surplus * \% Animal Feed	$=\$ 2,722,733$ US dollars tomato surplus * 18.53\% animal feed = \$504,523 US dollars tomatoes sent to animal feed
US Dollars Biomaterials / processing	= US Dollars Surplus * \% Biomaterials / processing	$=\$ 2,722,733$ US dollars tomato surplus * 4.62\% biomaterials / processing = \$125,790 US dollars tomatoes sent to biomaterials / processing
US Dollars Co/anaerobic digestion	= US Dollars Surplus * \% Co/anaerobic digestion	$=\$ 2,722,733$ US dollars tomato surplus * 4.81\% co/anaerobic digestion = \$130,963 US dollars tomatoes sent to co/ anaerobic digestion
US Dollars Composted	= US Dollars Surplus * \% Composted	$=\$ 2,722,733$ US dollars tomato surplus * 17.94% composted $=\$ 488,458$ US dollars tomatoes composted
US Dollars Land application	= US Dollars Surplus * \% Land application	$=\$ 2,722,733$ US dollars tomato surplus * 1.17\% land application $=\$ 31,856$ US dollars tomatoes sent to land application
US Dollars Sewer	= US Dollars Surplus * \% Sewer	= \$2,722,733 US dollars tomato surplus * 0\% disposed down the drain = \$0 US dollars tomatoes disposed via sewer
US Dollars Landfilled	= US Dollars Surplus * \% Landfilled	$\begin{aligned} & =\$ 2,722,733 \text { US dollars tomato surplus * } \\ & 33.83 \% \text { landfilled } \\ & =\$ 921,101 \text { US dollars tomatoes landfilled } \end{aligned}$
US Dollars Incineration	= US Dollars Surplus * \% Incineration	```= $2,722,733 US dollars tomato surplus * 0% incinerated = $0 US dollars tomatoes incinerated```

Data Sources and Limitations

Retail Value and Tons Sold

Raw data and documentation: This is confidential data from Nielsen and cannot be shared.
Nielsen data represents over 85\% coverage of grocery retail sales in the U.S. Each year top U.S. grocery retailers report item level point-of-sale sales data to Nielsen ${ }^{44}$, including information about each item such as the grocery chain where it was sold, the brand name of the product, the food classification (department, category, subcategory), the weight of food and packaging, and many other attributes. ReFED used this data to quantify the retail value and weight of food sold by grocery retailers in the U.S. by year, state, and food type. For more information about the weight data, see the U.S. Grocery Retail Dollar-to-Weight Conversion Factors report ${ }^{19}$.

Nielsen provided point-of-sale data for the years 2016-2019. In order to estimate values for the missing years 2010-2015 each subcategory was extrapolated using category-level average year-over-year linear growth rates for both sales value and sales weight. Due to the high granularity of the categories, there were some cases where the growth rates were either extremely high or extremely low. To avoid unrealistic growth estimations over time within these outlier categories, department-level growth rates were used instead if a category had a growth rate $\pm 15 \%$. These outlier categories represent 0.5% of total sales.

The accuracy of these estimates is limited to the accuracy of the Nielsen sales and weight data. The weight data for UPC items comes directly from up-to-date product packaging images. For non-UPC items sold in eaches, Nielsen estimates weight using a weight conversion factor (e.g., the average weight of a lemon). For other non-UPC items, Nielsen is reliant on the retailer transaction data to provide the item sale weight units (e.g., Ibs of apples sold).

Unsold Food Rates

Raw data and documentation: This contains confidential data from Nielsen and cannot be shared.
In 2016, USDA released a study using data from 2012 that quantified the percentage by weight of grocery retail supplier purchases that are not sold to customers ${ }^{48}$. Five individual retailers contributed supplier purchase data for the study and these numbers were compared to customer sales data. The data covered 45 states and 2,900 locations. See Appendix K for a list of unsold food rates from this study. These numbers are very credible and valuable for estimating retail food surplus in the U.S. The only limitations of using this dataset for this purpose are that the data is from 2012, and it does not cover a significant portion of items sold at grocery stores (e.g. complex products like boxed dinners, frozen meals, bakery items, etc.). ReFED used the 2012 unsold food rates for all years 2010-2019 when it was available for specific categories, so any changes in these rates over time are not reflected in the results.

For grocery retail categories not covered by the USDA LAFA dataset, ReFED used unsold food rates from the 2009 Food Marketing Institute (FMI) Supermarket Security and Loss Prevention Report ${ }^{49}$. Prior to 2010, FMI released this report on an annual basis, but since then it has been discontinued. The report includes food department unsold food percentages as reported by the 50 grocery retailers that participated in the confidential survey. See Appendix L for a list of unsold food rates from this report. ReFED used the retail percentages as opposed to cost. The limitations of using this dataset for
estimating retail food surplus in the U.S. are the following: (1) The data is provided as a percentage of retail value rather than weight, which would be the appropriate measure to quantify the weight of food surplus. (2) Like the USDA LAFA data, this data is outdated and was reused by ReFED for all years 20102019, so any changes in these rates over time are not reflected in the results. (3) The data is provided at the department level (e.g. Bakery) and does reflect differences between categories in each department (e.g., Cheesecake versus Artisan bread).

Unsold Food Causes

Raw data and documentation: This contains confidential data and cannot be shared.

ReFED was not able to identify any publicly available data sources that quantify the causes of unsold food for grocery retailers in the U.S. As a placeholder until further research can be done, ReFED developed estimates using data from Leanpath on the causes of unutilized food in foodservice combined with review and input from grocery retail subject matter experts. Leanpath is a technology company that helps foodservice companies track, weigh and analyze the amount of food that is wasted in commercial kitchens. Leanpath customers also indicate the reason the food was not used as well as the food type when using Leanpath's automated software system. For more information, see Appendix M and the Foodservice Methodology section.

Steps taken to adapt the Leanpath foodservice cause data to be relevant for grocery retail:

1. Map Leanpath's food types to similar grocery retail food types (e.g., Produce, Dry goods).
2. Filter out data for causes that are not relevant to the retail sector (e.g., Catering overproduction is not relevant for a grocery retail Produce department).
3. Quantify the causal breakdown of unused food by food type.
4. Have grocery retail subject matter experts review the data and compare it with numbers they're used to seeing in the field and make adjustments accordingly.

Fortunately, the retail experts said that the resulting estimates after step 3 were close to what they're used to seeing and only recommended a few adjustments. It seems that certain types of food are handled in similar ways, and as a result are prone to disposal due to similar causes across foodservice and retail. Further research is needed, however, to validate these placeholder estimates.

Unsold Food Destinations

Raw Data and Documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Retail_ UnsoldFoodDestinations.xlsx

In 2016 FWRA conducted a national food waste survey of grocery retailers in which 24 grocery retailers responded (35.3% of U.S. market share based on sales) ${ }^{47}$. ReFED used the data from this survey to quantify the percentage destination breakdown of unsold food from U.S. grocery retailers by year, state, and food type (See Appendix N).

There are a few limitations in using the data in this way. Because it was a national study for all food types, the data does not reflect geographic variations by state or variations in disposal patterns for different food types. Also, because it was a one-time study, the data does not provide insight into
changes in disposal habits over time. See Appendix N for a breakdown of unsold food destinations.

Because landfill versus incineration facility infrastructure varies significantly from state to state, the landfill and incineration numbers from the FWRA surveys were combined into a "\% Trash" number. ReFED then estimated the portion of trash that is landfilled versus incinerated in each state using data from BioCycle's 2010 "State of Garbage in America" survey", which was conducted in partnership with the Earth Engineering Center of Columbia University. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED reused these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Data Quality Evaluation

This rubric is designed to evaluate the quality of how each data source was utilized by ReFED to estimate food loss and waste. It is not meant to rate the quality of the study itself. See Appendix AA for more information about the ReFED Data Quality Rubric.

Table 12. Data Quality Evaluation for Food Waste Monitor Retail Sector

		DATA QUALITY SCORE						
DATA	SOURCE				$$		SCORE	WEIGHT
RETAIL SURPLUS FOOD								
US Dollars Sold	Nielsen Point-of-sale (POS) ${ }^{44}$	4	5	5	5	5	$\begin{gathered} \text { High } \\ 24 / 5=4.8 \end{gathered}$	25\%
Tons Sold	Nielsen Point-of-sale (POS) ${ }^{44}$	4	5	5	5	5	$\begin{gathered} \text { High } \\ 24 / 5=4.8 \end{gathered}$	25\%
Unsold Food Rate	FMI Supermarket Security and Loss Prevention Report ${ }^{49}$	4	1	2	3	3	Low $13 / 5=2.6$	50\%
		4.8 * 25\% + 4.8 * 25\% + 2.6 * 50\% = 3.7					Medium	
RETAIL CAUSES								
\% Unsold Food due to Cause	Expert Interviews ${ }^{50}$	1	1	1	3	1	Very Low $7 / 5=1.4$	100\%
				$1.4 * 100 \%=1.4$			Very Low	
RETAIL DESTINATIONS								
\% Destination Breakdown	FWRA Surveys ${ }^{47}$	4	1	2	1	3	Low $11 / 5=2.2$	95\%
\% of Trash that is Landfilled vs Incinerated by State	Biocycle/Columbia University Survey ${ }^{16}$	5	1	5	1	5	Medium $17 / 5=3.4$	5\%
		2.2 * 95\% + 3.4 * 5\% = 2.3					LOW	

INSIGHTS ENGINE FOOD WASTE MONITOR

2020 FOODSERVICE METHODOLOGY

FOODSERVICE METHODOLOGY

Scope Boundary

The following diagram communicates the scope boundary as aligned with the Food Loss and Waste Accounting and Reporting Standard ${ }^{1}$. Note that ReFED's analysis also includes food sent to donations, although donations are not considered a destination within the Standard.

*NOTES

- "Food Donation" has been added as a Destination
- "Biomaterial Processing is referred to as "Industrial Uses" in our model
- "Co/anaerobic digestion" is referred to as "Anaerobic digestion" in our model
- "Controlled Combustion" is referred to as "Incineration" in our model
- "Refuse/discards" is referred to as "Dumping" in our model

Calculations

Surplus Food Calculations

Master Surplus Equation:
Tons Pre-Consumer Surplus
+ Tons Onsite Plate Waste
+ Tons Catering Overproduction
+ Tons Catering Plate Waste
= Tons Foodservice Surplus

In ReFED's data model, the following calculations are repeated for every state, year, and foodservice segment before any aggregation is done.

Table 13. Calculations Performed to Quantify U.S. Foodservice Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	
SUPPLIER PURCHASES AND CUSTOMER SALES	EXAMPLE	

DATA ITEM
DATA SOURCE OR CALCULATION
= National Purchases from Suppliers * State
\% Share of Supplier Purchases * \% In-scope Ingredients

Purchases

US Dollars Supplier
= \$27,670,824,508 U.S. Limited Service Burger Restaurant purchases * 10.83\% Texas market share * 93.7% in-scope
$=\$ 2,808,158,994$ estimated Limited Service Burger supplier purchases in Texas
$=\$ 88,213,000,000$ U.S. Limited Service Burger Restaurant sales * 10.83\% Texas market share * 93.7\% in-scope = \$8,952,249,662 estimated Limited Service Burger Restaurant sales in Texas

ReFED estimates that the average wholesale price of food for McDonald's in 2019 was $\$ 1.84$ per lb.
$=\$ 2,808,158,994$ state supplier purchases /
$\$ 1.84$ per lb / 2,000 lbs per ton
= 762,999 tons of food purchased from
suppliers for Limited Service Burger restaurants in Texas
4.2\% of food spend not utilized by kitchens
= 762,999 tons of food purchased from
suppliers * (100% - 4.2\%)
$=730,953$ tons sold to customers at Limited rather than wholesale price, because it is ready to sell to a customer.
= Tons Purchased from Suppliers * (100\% -
Pre-Consumer Surplus Rate)

Service Burger restaurants in Texas
= 762,999 tons food purchased from suppliers * 4.2% surplus rate $=32,046$ tons pre-consumer surplus at Limited Service Burger restaurants in Texas
56.3\% of pre-consumer surplus for the Hospitality sector (proxy sector for restaurants) is due to Overproduction.
= 32,046 tons pre-consumer surplus * 56.3\% Overproduction
= 18,045 tons Overproduction
= \$8,952,249,662 sold / 730,953 tons sold /
2,000 lbs per ton
= \$6.12 retail value per Ib sold
$=18,045$ tons Overproduction * $\$ 6.12$ retail
value per lb sold * 2,000 lbs per ton
= \$221,008,321 Overproduction
"Prepared Foods" in the Food Waste Monitor.
$=$ US Dollars Sold $/$ Tons Sold $/ 2,000$ Ibs per
ton
=Tons Overproduction * Retail Price per Lb

Note: Overproduction is valued at retail
= Tons Purchased from Suppliers * PreConsumer Surplus Rate

Leanpath ${ }^{52}$
= Tons Pre-Consumer Surplus * \% of PreConsumer Surplus that is Overproduction

Note: All Overproduction was listed as

Retail Price per Lb

US Dollars Overproduction

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

$=32,046$ tons Pre-Consumer Surplus - 18,045

Tons Pre-Consumer Surplus (excluding Overproduction)	= Tons Pre-Consumer Surplus - Tons Overproduction	tons Overproduction = 14,001 tons Pre-Consumer Surplus (excluding Overproduction) at Limited Service Burger restaurants in Texas
US Dollars Pre-Consumer Surplus (excluding Overproduction)	= Tons Pre-Consumer Surplus (excluding Overproduction) * Wholesale Price per Lb * 2,000 lbs per ton	$=14,001$ tons Pre-Consumer Surplus (excluding Overproduction) * $\$ 1.84$ wholesale price per lb * 2,000 lbs per ton = \$51,528,065 pre-consumer surplus at Limited Service Burger restaurants in Texas
US Dollars Pre-Consumer Surplus	= US Dollars Overproduction + US Dollars Pre-Consumer Surplus (excluding Overproduction)	$\begin{aligned} & =\$ 221,008,321 \text { Overproduction }+ \\ & \$ 51,528,065 \text { other pre-consumer surplus } \\ & =\$ 272,491,348 \end{aligned}$
Food Type Breakdown of Ingredients	ReFED Calculation See Appendix O for more information	ReFED estimates the following food type breakdown for the McDonald's menu: Dairy \& Eggs: 29.85\% Ready-to-drink Beverages: 16.72\% Fresh Meat \& Seafood: 16.08\% Breads \& Bakery: 11.73\% Dry Goods: 10.39\% Produce: 8.00\% Frozen: 0.93\% Out of scope: 6.3\%
		Total: 100\% Breakdown after removing out of scope foods (e.g., soft drinks, bottled water):
		Dairy \& Eggs: 31.85\% Ready-to-drink Beverages: 17.85\% Fresh Meat \& Seafood: 17.16\% Breads \& Bakery: 12.52\% Dry Goods: 11.09\% Produce: 8.54\% Frozen: 0.99\%
		Total: 100\%
		Note: Dairy \& Eggs is so high because of eggs on the breakfast menu, cheese on burgers, cream added to coffee, etc. Dry Goods includes shelf stable items such as condiments, pickles, sugar added to coffee, etc. Soft drinks and water are considered out of scope. Ready-to-drink Beverages include coffee, tea, and juices.

DATA ITEM

Dairy \& Eggs:
= (32,046 tons pre-consumer surplus - 18,045 tons Overproduction) * 31.85\%
$=4,460$ tons

Ready-to-drink Beverages:
$=(32,046$ tons pre-consumer surplus - 18,045
tons Overproduction) * 17.85\%
= 2,499 tons

Fresh Meat \& Seafood:
= (32,046 tons pre-consumer surplus - 18,045 tons Overproduction) * 17.16\%
$=2,403$ tons

Breads \& Bakery:
$=(32,046$ tons pre-consumer surplus - 18,045
tons Overproduction) * 12.52\%
$=1,752$ tons

Dry Goods:
$=(32,046$ tons pre-consumer surplus - 18,045
tons Overproduction) * 11.09\%
$=1,552$ tons

Produce:
= (32,046 tons pre-consumer surplus - 18,045
tons Overproduction) * 8.54\%
$=1,196$ tons

Frozen:
$=(32,046$ tons pre-consumer surplus $-18,045$
tons Overproduction) * 0.99\%
$=139$ tons

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
		$\begin{aligned} & \text { Dairy \& Eggs: } \\ & =\$ 51,528,065 \text { pre-consumer surplus * } \\ & 31.85 \% \\ & =\$ 16,413,873 \text { surplus } \end{aligned}$ Ready-to-drink Beverages: $=\$ 51,528,065$ pre-consumer surplus * 17.85\% = \$9,196,942 surplus Fresh Meat \& Seafood: = \$51,528,065 pre-consumer surplus * 17.16\% = $\$ 8,842,338$ surplus
US Dollars Pre-Consumer Surplus by Food Type (excluding Overproduction)	= US Dollars Pre-Consumer Surplus (excluding Overproduction) * \% Food Type	Breads \& Bakery: $\begin{aligned} & =\$ 51,528,065 \text { pre-consumer surplus * } \\ & 12.52 \% \\ & =\$ 6,449,288 \text { surplus } \end{aligned}$ Dry Goods: $\begin{aligned} & =\$ 51,528,065 \text { pre-consumer surplus * } \\ & 11.09 \% \\ & =\$ 5,712,538 \text { surplus } \end{aligned}$ Produce: $\begin{aligned} & =\$ 51,528,065 \text { pre-consumer surplus * } 8.54 \% \\ & =\$ 4,401,845 \text { surplus } \end{aligned}$ Frozen: = \$51,528,065 pre-consumer surplus * 0.99\% $=\$ 511,241 \text { surplus }$
CATERING EXCESS		
Breakdown of Sales by Customer Distribution Channel	Technomic Ignite Platform ${ }^{51}$	For Limited Service restaurants in 2019: Take-out: 67\% Onsite Dining: 25\% Catering: 8\% \qquad Total: 100\%
\% Catering Overproduction	Expert Interviews See Appendix Q	Experts estimate that 38% of food is typically left unserved at breakfast or lunch catering events.

DATA ITEM	DATA SOURCE OR CALCULATION	
	O Tons Sold * \% Catering * \% Catering	EXAMPLE

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Total Tons Plate Waste	= Tons Onsite Plate Waste + Tons Catering Plate Waste Note: All Plate Waste was listed as "Prepared Foods" in the Food Waste Monitor.	$=20,556$ tons onsite plate waste $+4,090$ tons catering plate waste $=24,646$ tons total plate waste from Limited Service Burger restaurants in Texas
Total US Dollars Plate Waste	= US Dollars Onsite Plate Waste + US Dollars Catering Plate Waste	$=\$ 251,753,914$ onsite plate waste + \$50,096,303 catering plate waste $=\$ 301,850,217$ total plate waste from Limited Service Burger restaurants in Texas
TOTAL FOOD SURPLUS		
Tons Food Surplus	= Tons Pre-Consumer Surplus (including Overproduction) + Tons Plate Waste (including Onsite Dining and Catering) + Tons Catering Overproduction	$=32,046$ tons pre-consumer surplus $+24,646$ tons total plate waste $+22,186$ tons catering overproduction $=78,878$ tons food surplus from Limited Service Burger restaurants in Texas
US Dollars Food Surplus	= US Dollars Overproduction + US Dollars Pre-Consumer Surplus (excluding Overproduction) + US Dollars Plate Waste (including Onsite Dining and Catering) + US Dollars Catering Overproduction	= \$221,008,321 overproduction + $\$ 51,528,065$ pre-consumer surplus (excluding overproduction) + \$301,850,217 total plate waste $+\$ 271,718,460$ catering overproduction = \$846,105,064 food surplus from Limited Service Burger restaurants in Texas

Cause Calculations

Table 14. Calculations Performed to Quantify the Causes of U.S. Foodservice Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
PRE-CONSUMER SURPLUS CAUSES		
Tons Overproduction	See calculation above for Tons Overproduction	$=18,045$ tons Overproduction
US Dollars Overproduction	See calculation above for US Dollars Overproduction	= \$221,008,321 Overproduction
\% Surplus due to Cause (excluding Overproduction)		Pre-consumer food surplus causes (not including Overproduction) for the Hospitality segment in 2019 (used as a proxy for most restaurants). : Breads \& Bakery: Cooking issues: 1.6\% Date Label Concerns: 38.4\% Equipment issues: 0.0\% Food Safety: 0.0\% Handling errors: 6.3\% Other: 14.3\% Spoiled: 36.7\% Trimmings \& Byproducts: 2.7\%
		Total: 100\%
	Leanpath ${ }^{52}$	Dairy \& Eggs: Cooking issues: 3.2\%
	See Appendix R for causes by segment as well as proxies segments used when data was not available for a particular segment.	Date Label Concerns: 57.6\% Equipment issues: 1.1\% Food Safety: 0.0\% Handling errors: 5.5\% Other: 0.8\% Spoiled: 29.1\% Trimmings \& Byproducts: 2.7\%
		Total: 100\%
		Dry Goods:
		Cooking issues: 19.8\%
		Date Label Concerns: 57.8\%
		Equipment issues: 0.5\%
		Food Safety: 0.0\%
		Handling errors: 3.2\%
		Other: 0.4\%
		Spoiled: 15.3\%
		Trimmings \& Byproducts: 3\%
		Total: 100\%

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

> contin

Leanpath ${ }^{52}$

\% Surplus due to Cause (excluding Overproduction)

See Appendix R for causes by segment as well as proxies segments used when data was not available for a particular segment.

Fresh Meat \& Seafood:
Cooking issues: 5.0\%
Date Label Concerns: 57.4\%
Equipment issues: 0.7\%
Food Safety: 0.0\%
Handling errors: 8.2\%
Other: 1.5\%
Spoiled: 18.4\%
Trimmings \& Byproducts: 8.8\%
Total: 100\%

Frozen:
Cooking issues: 0.0\%
Date Label Concerns: 31.1\%
Equipment issues: 0.0\%
Food Safety: 0.0\%
Handling errors: 22.2\%
Other: 2.6\%
Spoiled: 36.3\%
Trimmings \& Byproducts: 7.8\%

Total: 100\%

Prepared Foods:
Cooking issues: 9.4\%
Date Label Concerns: 64.6\%
Equipment issues: 0.3\%
Food Safety: 0.0\%
Handling errors: 5.8\%
Other: 0.8\%
Spoiled: 16.1\%
Trimmings \& Byproducts: 3\%

Total: 100\%

Produce:
Cooking issues: 2.4\%
Date Label Concerns: 25\%
Equipment issues: 0.0\%
Food Safety: 0.0\%
Handling errors: 2%
Other: 1.2\%
Spoiled: 13.3\%
Trimmings \& Byproducts: 56\%

Total: 100\%

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

> continued from previous page...

Leanpath ${ }^{52}$
\% Surplus due to Cause (excluding Overproduction)
> continued from previous page...

See Appendix R for causes by segment as well as proxies segments used when data was not available for a particular segment.

Tons Pre-Consumer Surplus due to Cause (excluding Overproduction)
= Tons Pre-Consumer Surplus by Food Type * \% Pre-Consumer Surplus due to Cause

Ready-to-Drink Beverages:
Cooking issues: 0.0\%
Date Label Concerns: 29.9\%
Equipment issues: 0.0\%
Food Safety: 0.0\%
Handling errors: 4.2\%
Other: 21.2\%
Spoiled: 44.3\%
Trimmings \& Byproducts: 0.4\%

Total: 100\%

Tons due to Cooking Issues:
$=1,752$ tons surplus Breads \& Bakery * 1.6\%
$+4,460$ tons surplus Dairy \& Eggs * 3.2% +
1,552 tons surplus Dry Goods * $19.8 \%+2,403$
tons surplus Fresh Meat \& Seafood * 5.0% +
139 tons surplus Frozen * $0.0 \%+1,196$ tons
surplus Produce * $2.4 \%+2,499$ tons surplus
Ready-to-drink Beverages * 0.0\%
$=628$ tons

Tons due to Date Label Concerns:
$=1,752$ tons surplus Breads \& Bakery * 38.4\%

+ 4,460 tons surplus Dairy \& Eggs * 57.6\% +
1,552 tons surplus Dry Goods * $57.8 \%+2,403$
tons surplus Fresh Meat \& Seafood * 57.4% +
139 tons surplus Frozen * $31.1 \%+1,196$ tons
surplus Produce * $25.0 \%+2,499$ tons surplus
Ready-to-drink Beverages * 29.9\%
$=6,605$ tons
Tons due to Equipment Issues:
$=1,752$ tons surplus Breads \& Bakery * 0.0%
$+4,460$ tons surplus Dairy \& Eggs * 1.1\% +
1,552 tons surplus Dry Goods * $0.5 \%+2,403$
tons surplus Fresh Meat \& Seafood * 0.7\% +
139 tons surplus Frozen * $0.0 \%+1,196$ tons
surplus Produce * $0.0 \%+2,499$ tons surplus
Ready-to-drink Beverages * 0.0\%
$=75$ tons
Tons due to Food Safety:
= 1,752 tons surplus Breads \& Bakery * 0.0\%
$+4,460$ tons surplus Dairy \& Eggs * 0.0% +
1,552 tons surplus Dry Goods * $0.0 \%+2,403$
tons surplus Fresh Meat \& Seafood * 0.0% +
139 tons surplus Frozen * 0.0\% + 1,196 tons
surplus Produce * $0.0 \%+2,499$ tons surplus
Ready-to-drink Beverages * 0.0\%
$=0$ tons

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

> continued from previous > continued from previous page... page...

Tons due to Handling Errors:
$=1,752$ tons surplus Breads \& Bakery * 6.3\%
$+4,460$ tons surplus Dairy \& Eggs * 5.5\% +
1,552 tons surplus Dry Goods * $3.2 \%+2,403$
tons surplus Fresh Meat \& Seafood * 8.2\% +
139 tons surplus Frozen * $22.2 \%+1,196$ tons
surplus Produce * $2.0 \%+2,499$ tons surplus
Ready-to-drink Beverages * 4.2\%
= 759 tons

Tons due to Other:
= 1,752 tons surplus Breads \& Bakery * 14.3\%

+ 4,460 tons surplus Dairy \& Eggs * 0.8\% +
1,552 tons surplus Dry Goods * $0.4 \%+2,403$
tons surplus Fresh Meat \& Seafood * 1.5\% +
139 tons surplus Frozen * $2.6 \%+1,196$ tons
surplus Produce * $1.2 \%+2,499$ tons surplus
Ready-to-drink Beverages * 21.2\%
$=879$ tons

Tons Pre-Consumer Surplus = Tons Pre-Consumer Surplus by Food Type * due to Cause (excluding Overproduction)
\% Pre-Consumer Surplus due to Cause
Tons due to Spoiled:
$=1,752$ tons surplus Breads \& Bakery * 36.7\%

+ 4,460 tons surplus Dairy \& Eggs * 29.1\% +
1,552 tons surplus Dry Goods * $15.3 \%+2,403$
tons surplus Fresh Meat \& Seafood * 18.4\% +
139 tons surplus Frozen * $36.3 \%+1,196$ tons
surplus Produce * 13.3\% + 2,499 tons surplus
Ready-to-drink Beverages * 44.3\%
= 3,938 tons

Tons due to Trimmings \& Byproducts:
= 1,752 tons surplus Breads \& Bakery * 2.7\%
$+4,460$ tons surplus Dairy \& Eggs * 2.7\% +
1,552 tons surplus Dry Goods * 3.0\% + 2,403
tons surplus Fresh Meat \& Seafood * 8.8% +
139 tons surplus Frozen * 7.8\% + 1,196 tons
surplus Produce * $56.0 \%+2,499$ tons surplus
Ready-to-drink Beverages * 0.4\%
= 1,117 tons

EXAMPLE

US Dollars due to Cooking Issues:
$=\$ 6,449,288$ surplus Breads \& Bakery *
$1.6 \%+\$ 16,413,873$ surplus Dairy \& Eggs

* $3.2 \%+\$ 5,712,538$ surplus Dry Goods *
$19.8 \%+\$ 8,842,338$ surplus Fresh Meat \&
Seafood * $5.0 \%+\$ 511,241$ surplus Frozen *
$0.0 \%+\$ 4,401,845$ surplus Produce * 2.4% +
$\$ 9,196,942$ surplus Ready-to-drink Beverages
* 0.0\%
$=\$ 2,311,662$

US Dollars due to Date Label Concerns:
$=\$ 6,449,288$ surplus Breads \& Bakery *
$38.4 \%+\$ 16,413,873$ surplus Dairy \& Eggs

* 57.6% + \$5,712,538 surplus Dry Goods *
$57.8 \%+\$ 8,842,338$ surplus Fresh Meat \&
Seafood * 57.4\% + \$511,241 surplus Frozen
* $31.1 \%+\$ 4,401,845$ surplus Produce *
$25.0 \%+\$ 9,196,942$ surplus Ready-to-drink
Beverages * 29.9\%

US Dollars Pre-Consumer Surplus due to Cause (excluding Overproduction)
= US Dollars Pre-Consumer Surplus by Food Type * \% Pre-Consumer Surplus due to Cause
$=\$ 24,310,424$

US Dollars due to Equipment Issues:
= \$6,449,288 surplus Breads \& Bakery * 0.0\%

+ \$16,413,873 surplus Dairy \& Eggs * 1.1\%
+ \$5,712,538 surplus Dry Goods * 0.5\% +
\$8,842,338 surplus Fresh Meat \& Seafood
* $0.7 \%+\$ 511,241$ surplus Frozen * 0.0%
+ \$4,401,845 surplus Produce * 0.0% +
$\$ 9,196,942$ surplus Ready-to-drink Beverages
* 0.0\%
= \$275,069

US Dollars due to Food Safety:
= \$6,449,288 surplus Breads \& Bakery * 0.0\%

+ \$16,413,873 surplus Dairy \& Eggs * 0.0\%
+ \$5,712,538 surplus Dry Goods * 0.0% +
$\$ 8,842,338$ surplus Fresh Meat \& Seafood
* $0.0 \%+\$ 511,241$ surplus Frozen * 0.0%
+ \$4,401,845 surplus Produce * 0.0% +
$\$ 9,196,942$ surplus Ready-to-drink Beverages
* 0.0\%
= \$0

DATA ITEM

DATA SOURCE OR CALCULATION

EXAMPLE

Destination Calculations

Table 15. Calculations Performed to Quantify the Destinations of U.S. Foodservice Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Destination Breakdown of PreConsumer Food Surplus	Food Waste Reduction Alliance (FWRA) Survey ${ }^{47}$ Note: ReFED used Leanpath ${ }^{52}$ data rather than FWRA survey data to quantify the breakdown of preconsumer surplus for states that have organic waste recycling laws (California, Connecticut, Massachusetts, Oregon, Vermont, Washington). See Appendix S for more information.	Donated: 2.09\% Animal feed: 0.02\% Anaerobic Digestion: 0.02\% Compost: 0.38\% Land Application: 0.00\% Sewer: 0.00\% Dumping: 0.00\% Trash: 97.49\% Total: 100\% Note: ReFED excluded industrial uses (biomaterials/processing) data from the FWRA surveys, because most of this is spent cooking oil rather than preconsumer surplus.
	\% of Trash that is Landfilled vs Incinerated in Texas (Biocycle/Columbia University Survey ${ }^{14}$) (See Appendix Z)	\% of Trash that is Landfilled = 100\% $\%$ of Trash that is Incinerated $=0 \%$
	Breaking "Trash" into Landfill vs Incineration: \% Landfilled = \% Trash * \% of Trash that is Landfilled \% Incinerated = \% Trash * \% of Trash that is Incinerated	$\begin{aligned} & \text { \% Landfilled: } \\ & =97.49 \% \% \text { * 100\% } \\ & =97.49 \% \% \end{aligned}$ \% Incinerated: $\begin{aligned} & =97.49 \% \% \text { * 0\% } \\ & =0 \% \end{aligned}$

ReFED assumed that plate waste was sent to "Trash" in all states, except
states that have organic waste recycling laws. For those states, Leanpath ${ }^{52}$ plate waste destinations data was used instead. See Appendix T for more information.
\% of Trash that is Landfilled vs
Incinerated in Texas (Biocycle/Columbia
University Survey ${ }^{14}$) (See Appendix Z)
Breaking "Trash" into Landfill vs
Incineration:

$$
\begin{aligned}
& \text { \% of Trash that is Landfilled = 100\% } \\
& \% \text { of Trash that is Incinerated }=0 \% \\
& \text { \% Landfilled }=100 \% * 100 \% \\
& =100 \% \\
& \% \text { Incinerated }=0 \% * 0 \% \\
& =0 \%
\end{aligned}
$$

Donated: 0.00\%
Animal feed: 0.00\%
Anaerobic Digestion: 0.00\%
Compost: 0.00\%
Industrial uses: 0.00\%
Land Application: 0.00\%
Sewer: 0.00\%
Dumping: 0.00\%
Trash: 100\%

Total: 100\%
\% of Trash that is Landfilled $=100 \%$
\% of Trash that is Incinerated $=0 \%$
\% Landfilled $=100 \%$ * 100%
= 100\%
\% Incinerated = 100\% * 0\%
= 0\% that is Incinerated
= Tons Pre-Consumer Surplus * \%
Donations for Pre-Consumer Surplus + Total Tons Plate Waste * \% Donations for Plate Waste + Tons Catering Overproduction * \% Donations for Catering Overproduction

Assumed 100\% Trash for plate waste in Texas
that is Incinerated

ReFED assumed that catering overproduction was sent to "Trash" in all states, except states that have organic waste recycling laws. For those states, Leanpath ${ }^{52}$ plate waste destinations data was used instead. See Appendix U for more information.
\% of Trash that is Landfilled vs
Incinerated in Texas (Biocycle/Columbia University Survey ${ }^{14}$) (See Appendix Z)
Breaking "Trash" into Landfill vs Incineration:
\% Landfilled = \% Trash * \% of Trash that is Landfilled
\% Incinerated = \% Trash * \% of Trash

Tons Donated

Tons Animal Feed	= Tons Pre-Consumer Surplus * \% Animal Feed for Pre-Consumer Surplus + Total Tons Plate Waste * \% Animal Feed for Plate Waste + Tons Catering Overproduction * \% Animal Feed for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons } * 0.02 \%+24,646 \text { tons * } \\ & 0 \%+22,186 \text { tons * } 0 \% \\ & =7 \text { tons } \end{aligned}$
Tons Industrial uses	= Tons Pre-Consumer Surplus * \% Industrial uses for Pre-Consumer Surplus + Total Tons Plate Waste * \% Industrial uses for Plate Waste + Tons Catering Overproduction * \% Industrial uses for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons * } 0 \%+24,646 \text { tons * } 0 \%+ \\ & 22,186 \text { tons * } 0 \% \\ & =0 \text { tons } \end{aligned}$
Tons Anaerobic Digestion	= Tons Pre-Consumer Surplus * \% Anaerobic Digestion for Pre-Consumer Surplus + Total Tons Plate Waste * \% Anaerobic Digestion for Plate Waste + Tons Catering Overproduction * \% Anaerobic Digestion for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons } * 0.02 \%+24,646 \text { tons * } \\ & 0 \%+22,186 \text { tons * } 0 \% \\ & =7 \text { tons } \end{aligned}$
Tons Composted	= Tons Pre-Consumer Surplus * \% Composted for Pre-Consumer Surplus + Total Tons Plate Waste * \% Composted for Plate Waste + Tons Catering Overproduction * \% Composted for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons } * 0.38 \%+24,646 \text { tons * } \\ & 0 \%+22,186 \text { tons * } 0 \% \\ & =123 \text { tons } \end{aligned}$
Tons Land Application	= Tons Pre-Consumer Surplus * \% Land Application for Pre-Consumer Surplus + Total Tons Plate Waste * \% Land Application for Plate Waste + Tons Catering Overproduction * \% Land Application for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons * } 0 \%+24,646 \text { tons * } 0 \%+ \\ & 22,186 \text { tons * } 0 \% \\ & =0 \text { tons } \end{aligned}$
Tons Sewer	= Tons Pre-Consumer Surplus * \% Sewer for Pre-Consumer Surplus + Total Tons Plate Waste * \% Sewer for Plate Waste + Tons Catering Overproduction * \% Sewer for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons * } 0 \%+24,646 \text { tons * } 0 \%+ \\ & 22,186 \text { tons * } 0 \% \\ & =0 \text { tons } \end{aligned}$
Tons Dumping	= Tons Pre-Consumer Surplus * \% Dumping for Pre-Consumer Surplus + Total Tons Plate Waste * \% Dumping for Plate Waste + Tons Catering Overproduction * \% Dumping for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons * } 0 \%+24,646 \text { tons * } 0 \%+ \\ & 22,186 \text { tons * } 0 \% \\ & =0 \text { tons } \end{aligned}$
Tons Landfilled	= Tons Pre-Consumer Surplus * \% Landfilled for Pre-Consumer Surplus + Total Tons Plate Waste * \% Landfilled for Plate Waste + Tons Catering Overproduction * \% Landfilled for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons } * 97.49 \%+24,646 \text { tons * } \\ & 100 \%+22,186 \text { tons } * 100 \% \\ & =78,073 \text { tons } \end{aligned}$

Tons Incineration	= Tons Pre-Consumer Surplus * \% Incineration for Pre-Consumer Surplus + Total Tons Plate Waste * \% Incineration for Plate Waste + Tons Catering Overproduction * \% Incineration for Catering Overproduction	$\begin{aligned} & =32,046 \text { tons * } 0 \%+24,646 \text { tons * } 0 \%+ \\ & 22,186 \text { tons * } 0 \% \\ & =0 \text { tons } \end{aligned}$
US Dollars Donated	= US Dollars Pre-Consumer Surplus * \% Donations for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Donations for Plate Waste + US Dollars Catering Overproduction * \% Donations for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 \text { * } 2.09 \%+\$ 301,850,217 \\ & * 0 \%+\$ 271,718,460 \text { * } 0 \% \\ & =\$ 5,683,278 \end{aligned}$
US Dollars Animal Feed	= US Dollars Pre-Consumer Surplus * \% Animal Feed for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Animal Feed for Plate Waste + US Dollars Catering Overproduction * \% Animal Feed for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 * 0.02 \%+\$ 301,850,217 \\ & * 0 \%+\$ 271,718,460 \text { * } 0 \% \\ & =\$ 57,993 \end{aligned}$
US Dollars Industrial uses	= US Dollars Pre-Consumer Surplus * \% Industrial uses for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Industrial uses for Plate Waste + US Dollars Catering Overproduction * \% Industrial uses for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 * 0 \%+\$ 301,850,217 * \\ & 0 \%+\$ 271,718,460 * 0 \% \\ & =\$ 0 \end{aligned}$
US Dollars Anaerobic Digestion	= US Dollars Pre-Consumer Surplus * \% Anaerobic Digestion for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Anaerobic Digestion for Plate Waste + US Dollars Catering Overproduction * \% Anaerobic Digestion for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 \text { * } 0.02 \%+\$ 301,850,217 \\ & * 0 \%+\$ 271,718,460 \text { * } 0 \% \\ & =\$ 57,993 \end{aligned}$
US Dollars Composted	= US Dollars Pre-Consumer Surplus * \% Composted for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Composted for Plate Waste + US Dollars Catering Overproduction * \% Composted for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 * 0.37 \%+\$ 301,850,217 \\ & * 0 \%+\$ 271,718,460 * 0 \% \\ & =\$ 1,043,867 \end{aligned}$
US Dollars Land Application	= US Dollars Pre-Consumer Surplus * \% Land Application for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Land Application for Plate Waste + US Dollars Catering Overproduction * \% Land Application for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 * 0 \%+\$ 301,850,217 * \\ & 0 \%+\$ 271,718,460 * 0 \% \\ & =\$ 0 \end{aligned}$

DATA ITEM

US Dollars Sewer

US Dollars Landfilled

US Dollars Incineration

DATA SOURCE OR CALCULATION

EXAMPLE

= US Dollars Pre-Consumer Surplus * \% Sewer for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Sewer for Plate Waste + US Dollars Catering Overproduction * \% Sewer for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 * 0 \%+\$ 301,850,217 \text { * } \\ & 0 \%+\$ 271,718,460 \text { * } 0 \% \\ & =\$ 0 \end{aligned}$
= US Dollars Pre-Consumer Surplus * \% Dumping for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Dumping for Plate Waste + US Dollars Catering Overproduction * \% Dumping for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 * 0 \%+\$ 301,850,217 \text { * } \\ & 0 \%+\$ 271,718,460 \text { * } 0 \% \\ & =\$ 0 \end{aligned}$
= US Dollars Pre-Consumer Surplus * \% Landfilled for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Landfilled for Plate Waste + US Dollars Catering Overproduction * \% Landfilled for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 * 97.49 \%+ \\ & \$ 301,850,217 * 100 \%+\$ 271,718,460 * \\ & 100 \% \\ & =\$ 839,261,933 \end{aligned}$
= US Dollars Pre-Consumer Surplus * \% Incineration for Pre-Consumer Surplus + Total US Dollars Plate Waste * \% Incineration for Plate Waste + US Dollars Catering Overproduction * \% Incineration for Catering Overproduction	$\begin{aligned} & =\$ 272,536,386 * 0 \%+\$ 301,850,217 \text { * } \\ & 0 \%+\$ 271,718,460 \text { * } 0 \% \\ & =\$ 0 \end{aligned}$

Data Sources and Limitations

National Foodservice Purchases and Sales

Raw data and documentation: This is confidential data from Technomic and cannot be shared.
Technomic is the leading sales and market share data company for the U.S. foodservice sector. ReFED obtained foodservice supplier purchases and customer sales data from the Technomic Ignite Platform ${ }^{51}$. This data is provided annually and is broken down by segment (e.g., limited service restaurants, full service restaurants, lodging, business \& industry, etc.) and cuisine (e.g., burger, asian/noodle, varied menu), but is only available at the national, not state, level.

State Restaurant Locations and Employee Counts for Non-Restaurant Segments

Raw data and documentation:

- Restaurant Locations:

This contains confidential data from Technomic and cannot be shared.

- Employee Counts for Non-Restaurant:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Foodservice_EmployeeCounts.xlsx

For limited service restaurants, full service restaurants, and bars \& taverns, ReFED allocated national sales down to the state level using the Technomic state-level locations data for the Top 500 restaurants ${ }^{51}$. A limitation of this approach is that sales is not always proportional to the number of locations.

Because Technomic did not have comprehensive location data for non-restaurant foodservice segments (e.g., Healthcare, Lodging, Business \& Industry, Universities, etc.), ReFED used industry employee counts from the Bureau of Labor Statistics (BLS) to allocate national Technomic sales to each state for these categories ${ }^{20}$. ReFED mapped each BLS NAICS industry code to the equivalent Technomic segment. Similar to the locations data, a limitation of this approach is that sales is not always proportional to the number of employees.

Wholesale Price per Lb

Raw data and documentation: This contains confidential data from Technomic and cannot be shared.
ReFED calculated average wholesale price per Ib estimates for each foodservice segment by subtracting retailer price margins ${ }^{45}$ from Nielsen retail prices ${ }^{19}$ for hundreds of food categories. The average food category mix for each foodservice segment was estimated by combining menu data from the Technomic Ignite Platform¹ (e.g., Cheeseburger, Fries, etc.) with food type ingredient breakdown data from USDA Food Data Central ${ }^{22}$ (e.g., A cheeseburger is 38% ground beef, 27% bread, 9% cheese, 9% tomato, 7% sauce, 7% pickles, 4% lettuce). Each foodservice segment was assigned a proxy menu based on the top restaurant by sales in each segment. For non-restaurant segments, a restaurant proxy menu was used. See Appendix O for wholesale price estimates and proxy menus used for each foodservice segment.

Pre-Consumer Surplus Rates

Leanpath is a technology company that helps foodservice companies track, weigh and analyze the amount of food that is wasted in commercial kitchens. Leanpath customers indicate the reason the food was not used, where it will be sent (e.g., composting, landfill, etc.), and the food type of the disposed food when using Leanpath's software system. Based on the data in their system across multiple clients, Leanpath estimates that on average 4.2% of food purchases are not utilized in commercial foodservice kitchens ${ }^{52}$.

The limitations of using the Leanpath data to estimate foodservice pre-consumer surplus rates for all foodservice segments over time are the following: (1) The 4.2\% estimate was a one-time estimate and does not reflect changes in performance over time. (2) Leanpath's current client base does not include restaurants, so if restaurants have significantly different pre-consumer surplus rates, this is not reflected. (3) The 4.2\% estimate is not food type specific, so food type variations are not reflected.

Food Type Breakdown

Raw data and documentation: This is confidential data from Technomic and cannot be shared.

ReFED used menu data from Technomic ${ }^{51}$ in combination with food ingredient breakdown data from USDA Food Data Central22 to estimate the food ingredient breakdown of multiple menus. The Technomic menu data listed all of the items on a menu for the Top 500 restaurants (e.g., Cheeseburger, Fries, etc.). ReFED mapped each menu item to the closest matching food item in the USDA Food Data Central database, which provides the ingredient weight breakdown of each food (e.g., A cheeseburger is 38% ground beef, 27\% bread, 9\% cheese, 9\% tomato, 7\% sauce, 7\% pickles, 4\% lettuce). Each foodservice segment was assigned a proxy menu based on the top restaurant by sales in each segment (e.g., McDonald's menu was used as a proxy for Limited Service Burger Restaurants). For non-restaurant segments, a restaurant proxy menu was used. For example, since Applebee's was the proxy menu for the Varied Menu segment, it was used as the proxy for Business \& Industry cafeterias since that setting has a varied menu as well. See Appendix O for a list of the proxy menus used for each foodservice segment as well as the estimated food type breakdown of their menus. This data was used to estimate the food type breakdown of Pre-Consumer Surplus by foodservice segment.

Distribution Channels (Dine in vs Takeout vs Catering)

Raw data and documentation: This is confidential data from Technomic and cannot be shared.

ReFED used proprietary data from Technomic ${ }^{51}$ to estimate the amount of food that is eaten onsite or at catering events as opposed to takeout. In ReFED's data model, takeout is considered out of scope for the Foodservice sector and is accounted for in the Residential sector modeling instead. The distribution channel data provided by Technomic is broken out separately for different types of Limited Service Restaurants (quick service, fast casual) and Full Service Restaurants (casual dining, midscale, fine dining). ReFED assumed that 100\% of food was eaten onsite for other types of foodservice (Education, Healthcare, Business \& Industry, Military, Corrections, Lodging, Recreation, and Transportation).

Plate Waste Rates

Raw data and documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Foodservice_PlateWasteRates.xlsx

ReFED used multiple quantitative studies conducted by nonprofits, academics, and government organizations to estimate plate waste rates ${ }^{53,54,55,56,57}$. ReFED identified the latest, most suitable study available to use as a proxy for plate waste rates in each foodservice segment. See Appendix P for a list of plate waste rates and proxy assignments. Because some foodservice types are under researched and because these were all one-time studies based on a few locations, a more robust, continually updated dataset is needed to better understand plate waste rates across multiple foodservice segments over time.

Catering Overproduction Rates

Based on expert interviews with catering organizations, ReFED estimates that 28\% of food is never served to clients at buffet style catering events, 38% for breakfast and lunch events, and 13\% for plated events. See Appendix Q for a list of which rates were used to estimate catering overproduction for each foodservice type.

Pre-Consumer Surplus Causes

Raw data and documentation: This is confidential data from Leanpath and cannot be shared.

Leanpath is a technology company that helps foodservice companies track, weigh and analyze the amount of food that is wasted in commercial kitchens. Leanpath customers indicate the reason the food was not used, where it will be sent (e.g., composting, landfill, etc.), and the food type when using Leanpath's waste tracking system. Leanpath pulled aggregated data ${ }^{52}$ from their system to estimate the percent breakdown of pre-consumer surplus causes by food type for the following segments: Business \& Industry, Hospitality, Healthcare, and Education. See Appendix R for pre-consumer surplus cause data for each of these foodservice segments as well as which segments were used as proxies for others (e.g., Hospitality data was used as a proxy for restaurants).

Pre-Consumer Surplus Destinations

Raw data and documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Foodservice_PreconsumerSurplusDestinations.xIsx

For most states, ReFED used data from the 2016 Food Waste Reduction Alliance (FWRA) survey ${ }^{47}$ of restaurants in which 28 restaurant companies responded (11.8% of U.S. market share based on sales) to estimate the destination breakdown of pre-consumer surplus. Data on industrial uses (or biomaterials/ processing) was excluded because most of this is spent cooking oil rather than pre-consumer surplus. Since this data indicated that 94\% of pre-consumer surplus is landfilled, which is not the case in states that have organics recycling laws, ReFED instead used data from Leanpath to estimate the pre-consumer surplus destinations for these states (California, Connecticut, Massachusetts, Oregon, Vermont, and Washington). ReFED did not use the Leanpath data for other states to avoid selection bias as Leanpath clients may be more likely to compost food scraps than the average foodservice business.

Because landfill versus incineration facility infrastructure varies significantly from state to state, the landfill and incineration numbers were combined into a "\% Trash" number. ReFED then estimated the portion of trash that is landfilled versus incinerated in each state using data from BioCycle's 2010 "State of Garbage in America" survey ${ }^{16}$, which was conducted in partnership with the Earth Engineering Center of Columbia University. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED reused these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Plate Waste Destinations

Raw data and documentation:

- https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Foodservice_CateringPlateWasteDestinations.xIsx
- https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Foodservice_OnsitePlateWasteDestinations.xIsx

ReFED assumed that plate waste was sent to "Trash" in all states, except states that have organics recycling laws. For these states (California, Connecticut, Massachusetts, Oregon, Vermont, and Washington), Leanpath plate waste destinations data was used instead ${ }^{52}$. ReFED did not use the Leanpath data for other states to avoid selection bias as Leanpath clients may be more likely to compost food scraps than the average foodservice business.

ReFED then estimated the portion of trash that is landfilled versus incinerated in each state using data from BioCycle's 2010 "State of Garbage in America" survey ${ }^{16}$, which was conducted in partnership with the Earth Engineering Center of Columbia University. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED reused these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Catering Overproduction Destinations

Raw data and documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Foodservice_CateringOverproductionDestinations.xlsx

ReFED assumed that catering overproduction was sent to "Trash" in all states, except states that have organic waste recycling laws. For states with organics recycling laws (California, Connecticut, Massachusetts, Oregon, Vermont, and Washington), Leanpath catering overproduction destinations data was used instead ${ }^{52}$. ReFED did not use the Leanpath data for other states to avoid selection bias as Leanpath clients may be more likely to compost food scraps than the average foodservice business.

ReFED then estimated the portion of trash that is landfilled versus incinerated in each state using data from BioCycle's 2010 "State of Garbage in America" survey ${ }^{16}$, which was conducted in partnership with the Earth Engineering Center of Columbia University. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED reused these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Data Quality Evaluation

This quality assessment is meant to evaluate the quality of how each data source was used by ReFED to estimate food loss and waste. It is not meant to rate the quality of the study itself. A high quality study used by ReFED beyond the study's intended purposes could result in a low data quality score. See Appendix AA for more information about the ReFED Data Quality Rubric.

Table 16. Data Quality Evaluation for Food Waste Monitor Foodservice Sector

		DATA QUALITY SCORE						
DATA	SOURCE						SCORE	WEIGHT
FOODSERVICE SURPLUS								
National Purchases from Suppliers	Technomic Ignite Platform ${ }^{51}$	4	5	5	1	3	Medium $18 / 5=3.6$	10\%
National US Dollars Sold	Technomic Ignite Platform ${ }^{51}$	4	5	5	1	3	Medium $18 / 5=3.6$	8\%
State Locations for Top 500 Restaurants	Technomic Ignite Platform ${ }^{51}$	4	5	5	1	5	$\begin{gathered} \text { High } \\ 20 / 5=4.0 \end{gathered}$	8\%
State Employee Counts for Non- Restaurant Segments	U.S. Bureau of Labor Statistics Employee Levels ${ }^{20}$	5	5	5	1	5	$\begin{gathered} \text { High } \\ 21 / 5=4.2 \end{gathered}$	8\%
Food Type Breakdown	Technomic Ignite Platform Menu Data ${ }^{51}$	2	1	1	5	3	Low $12 / 5=2.4$	8\%
Wholesale Price per Lb	ReFED Calculations ${ }^{19,22,45,51}$	2	5	1	5	3	Medium $16 / 5=3.2$	8\%
Pre-Consumer Surplus Rate	Leanpath ${ }^{52}$	4	1	1	1	3	Low $10 / 5=2.0$	3\%
Distribution Channels (Dine in vs Takeout vs Catering)	Technomic Ignite Platform ${ }^{51}$	4	1	5	3	3	Medium $16 / 5=3.2$	10\%
Plate Waste Rates	Plate Waste Studies ${ }^{53,54,55,56,57}$	5	1	1	3	1	Low $11 / 5=2.2$	35\%
\% Catering Overproduction	Expert Interviews	1	1	1	2	1	Very Low $6 / 5=1.2$	2\%
$\begin{array}{r} 3.6 * 10 \%+3.6 * 8 \%+4.0 * 8 \%+4.2 * 8 \%+2.4 * 8 \%+3.2 * 8 \%+2.0 * 3 \%+3.2 * 10 \%+2.2 * \\ 35 \%+1.2 * 2 \%=2.9 \end{array}$								

DATA	SOURCE	DATA QUALITY SCORE						
					$\begin{aligned} & \text { ㄴ } \\ & \stackrel{1}{l} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		SCORE	WEIGHT
FOODSERVICE CAUSES								
\% Pre-Consumer Surplus due to Cause	Leanpath ${ }^{52}$	4	5	1	5	3	Medium $18 / 5=3.6$	6\%
Distribution Channels (Dine in vs Takeout vs Catering)	Technomic Ignite Platform ${ }^{51}$	4	5	5	5	3	$\begin{gathered} \text { High } \\ 22 / 5=4.4 \end{gathered}$	20\%
Plate Waste Rates	Plate Waste Studies ${ }^{5,54,55,56,57}$	5	1	1	2	1	Low $10 / 5=2.0$	70\%
\% Catering Overproduction	Expert Interviews	1	1	1	2	1$=2.5$	Very Low $6 / 5=1.2$	4\%
	3.6 * 6\% + 4.4 * 20\% + 2.0 * $70 \%+1.2$ * 4\% = 2.5						LOW	
FOODSERVICE DESTINATIONS								
\% Destination Breakdown for Pre- Consumer Surplus	FWRA Surveys ${ }^{47}$, Leanpath ${ }^{52}$	3	1	1	1	2	Very Low $8 / 5=1.6$	15\%
\% Destination Breakdown for Plate Waste	Leanpath ${ }^{52}$, ReFED Assumptions	4	5	1	5	2	$\begin{aligned} & \text { Medium } \\ & 17 / 5=3 . \end{aligned}$	65\%
\% Destination Breakdown for Catering Overproduction	Leanpath ${ }^{52}$, ReFED Assumptions	4	5	1	5	2	Medium $17 / 5=3.4$	10\%
\% of trash landfilled vs incinerated	Biocycle/Columbia University Survey ${ }^{14}$	5	1	5	1	5	Medium $17 / 5=3.4$	10\%
	1.6 * 15\% + 3.4 * 65\% + 3.4 * 10\% + 3.4 * 10\% = 3.1						Medium	

2020 RESIDENTIAL METHODOLOGY

RESIDENTIAL METHODOLOGY

Scope Boundary

The following diagram communicates the scope boundary as aligned with the Food Loss and Waste Accounting and Reporting Standard¹. Note that ReFED's analysis also includes food sent to donations, although donations are not considered a destination within the Standard.

*NOTES

- "Food Donation" has been added as a Destination
- "Biomaterial Processing is referred to as "Industrial Uses" in our model
- "Co/anaerobic digestion" is referred to as "Anaerobic digestion" in our model
- "Controlled Combustion" is referred to as "Incineration" in our model
- "Refuse/discards" is referred to as "Dumping" in our model

Calculations

Surplus Food Calculations

```
Master Surplus Equation:
(Tons Purchased from Grocery Stores + Tons Obtained Elsewhere )
x Surplus Rate
```

= Tons Residential Surplus

In ReFED's data model, the following calculations are repeated for every state, year, and food type before any aggregation is done.

Table 17. Calculations Performed to Quantify U.S. Residential Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
US Dollars Purchased from Grocery Stores	Nielsen Point-of-Sale (POS) Data ${ }^{44}$	\$16,095,997 Million tomatoes purchased from grocery stores in Arkansas in 2019
Tons Purchased from Grocery Stores	Nielsen Point-of-Sale (POS) Data ${ }^{44}$	4,507 tons purchased from grocery stores in Arkansas in 2019
Retail Price per Lb	= US Dollars Purchased from Grocery Stores / Tons Purchased from Grocery Stores / 2,000 lbs per ton See U.S. Grocery Retail Dollar-to-Weight Conversion Factors Report ${ }^{19}$ for more information on the price per lb data.	= \$16,095,997 Million tomatoes purchased / 4,507 tons purchased / 2,000 lbs per ton $=\$ 1.79$ per lb
\% of Food Obtained from Grocery Stores	USDA NHANES Survey ${ }^{58}$	91% of fresh tomatoes are obtained from grocery stores (as opposed to restaurants, farmers markets, food banks, gas stations, home gardens, etc.)
Tons Obtained Elsewhere	= Tons Purchased from Grocery Stores * (100% - \% of Food Obtained from Grocery Stores) / \% of Food Obtained from Grocery Stores	$\begin{aligned} & =4,507 \text { tons purchased from grocery * (} \\ & 100 \%-91 \%) / 91 \% \\ & =457 \text { tons tomatoes obtained } \\ & \text { elsewhere } \end{aligned}$
Surplus Rate	USDA Consumer-Level Food Loss Estimates ${ }^{59,15}$	7\% of tomatoes brought home are wasted
Tons Surplus	```= (Tons Purchased from Grocery Stores + Tons Obtained Elsewhere) * Surplus Rate```	$\begin{aligned} & =(4,507 \text { tons purchased from grocery }+ \\ & 457 \text { tons obtained elsewhere })^{*} 7 \% \\ & =347 \text { tons tomato surplus } \end{aligned}$
US Dollars Surplus	= Tons Surplus * Retail Price per Lb * 2,000 lbs per ton	$=347 \text { tons tomato surplus * } \$ 1.79 \text { per }$ lb $=\$ 1,240,906$ surplus

Cause Calculations

```
Master Cause Equation:
Tons Surplus due to Cause = Tons Surplus * % Loss due to Cause
```

Table 18. Calculations Performed to Quantify the Causes of U.S. Residential Surplus Food

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
\% Surplus due to Cause	NRDC Home Kitchen Diaries ${ }^{60}$	Example data breakdown of home food waste causes for produce (See Appendix X for other food types): Considered inedible: 16.2\% Cooking issues: 0.3\% Date label concerns: 0.9\% Didn't taste good: 2.5\% Didn't want leftovers: 2.1\% Inedible parts: 46.4\% Left out too long: 3.7\% Other: 3.8\% Spoiled: 22.9\% Too little to save:1.4\%
		Total: 100\%
Tons Surplus due to Cause	= Tons Surplus * \% Surplus due to Cause	Tons due to Considered inedible: $\text { = } 347 \text { tons tomato surplus * 16.2\% }$ $=56 \text { tons }$ Tons due to Cooking issues: $\begin{aligned} & =347 \text { tons tomato surplus * } 0.3 \% \\ & =1 \text { tons } \end{aligned}$
		Tons due to Date label concerns: = 347 tons tomato surplus * 0.9\% $=3$ tons
		Tons due to Didn't taste good: = 347 tons tomato surplus * 2.5\% $=9$ tons
		Tons due to Didn't want leftovers: = 347 tons tomato surplus * 2.1% $=7$ tons
		$\begin{aligned} & \text { Tons due to Inedible parts: } \\ & =347 \text { tons tomato surplus * } 46.4 \% \\ & =161 \text { tons } \end{aligned}$
		$\begin{aligned} & \text { Tons due to Left out too long: } \\ & =347 \text { tons tomato surplus * } 3.7 \% \\ & =13 \text { tons } \end{aligned}$

Master Destination Equation:

Tons Surplus sent to Destination = Tons Surplus * \% Sent to Destination

Table 19. Calculations Performed to Quantify the Destinations of U.S. Residential Surplus F

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE
Destination Breakdown of Residential Surplus	NRDC Home Kitchen Diaries ${ }^{60}$	According to the NRDC Home Kitchen Diaries, this was the destination breakdown of residential surplus for produce (See Appendix Y for other food types):
		Animal feed: 0.4\% Compost: 45.9\% Sewer: 1.3\% Trash: 52.3\%
		Total: 100\%
	\% of Trash that is Landfilled vs Incinerated in Arkansas (Biocycle/ Columbia University Survey ${ }^{14}$) (See Appendix Z)	\% of Trash that is Landfilled = 100\% $\%$ of Trash that is Incinerated = 0\%
	Breaking "Trash" into Landfill vs Incineration: \% Landfilled = \% Trash * \% of Trash that is Landfilled \% Incinerated = \% Trash * \% of Trash that is Incinerated	\% Landfilled: $\begin{aligned} & =52.3 \% \text { * 100\% } \\ & =52.3 \% \end{aligned}$ \% Incinerated: $\begin{aligned} & =52.3 \% * 0 \% \\ & =0 \% \end{aligned}$
Tons Animal Feed	= Tons Surplus * \% Animal Feed	```= 347 tons tomato surplus * 0.4% animal feed = 2 tons tomatoes sent to animal feed```
Tons Composted	= Tons Surplus * \% Composted	```= 347 tons tomato surplus * 45.9% composted = 160 tons tomatoes composted```
Tons Sewer	= Tons Surplus * \% Sewer	$\begin{aligned} & =347 \text { tons tomato surplus * } 1.3 \% \\ & \text { disposed down the drain } \\ & =5 \text { tons tomatoes disposed via sewer } \end{aligned}$
Tons Landfilled	= Tons Surplus * \% Landfilled	```= 347 tons tomato surplus * 52.3% landfilled = 182 tons tomatoes landfilled```
Tons Incineration	= Tons Surplus * \% Incineration	$\begin{aligned} & =347 \text { tons tomato surplus * } 0 \% \\ & \text { incinerated } \\ & =0 \text { tons tomatoes incinerated } \end{aligned}$
US Dollars Animal Feed	= US Dollars Surplus * \% Animal Feed	$\begin{aligned} & =\$ 1,240,906 \text { tomato surplus * } 0.4 \% \\ & \text { animal feed } \\ & =\$ 5,553 \text { tomatoes sent to animal feed } \end{aligned}$

DATA ITEM	DATA SOURCE OR CALCULATION	EXAMPLE

Data Sources and Limitations

Retail Value and Tons Purchased at Grocery Stores

Raw data and documentation: This is confidential data from Nielsen and cannot be shared.

Nielsen data represents over 85\% coverage of grocery retail sales in the U.S. Each year top U.S. grocery retailers report item level point-of-sale sales data to Nielsen ${ }^{44}$, including information about each item such as the grocery chain where it was sold, the brand name of the product, the food classification (department, category, subcategory), the weight of food and packaging, and many other attributes. ReFED used this data to quantify the retail value and weight of food sold by grocery retailers in the U.S. by year, state, and food type. For more information about the weight data, see the U.S. Grocery Retail Dollar-to-Weight Conversion Factors report ${ }^{19}$.

Nielsen provided point-of-sale data for the years 2016-2019. In order to estimate values for the missing years 2010-2015 each subcategory was extrapolated using category-level average year-over-year linear growth rates for both sales value and sales weight. Due to the high granularity of the categories, there were some cases where the growth rates were either extremely high or extremely low. To avoid unrealistic growth estimations over time within these outlier categories, department-level growth rates were used instead if a category had a growth rate $\pm 15 \%$. These outlier categories represent 0.5% of total sales.

The accuracy of these estimates is limited to the accuracy of the Nielsen sales and weight data. The weight data for UPC items comes directly from up-to-date product packaging images. For non-UPC items sold in eaches, Nielsen estimates weight using a weight conversion factor (e.g., the average weight of a lemon). For other non-UPC items, Nielsen is reliant on the retailer transaction data to provide the item sale weight units (e.g., Ibs of apples sold).

A limitation of using this dataset to quantify residential grocery store purchases is that a small portion of grocery store sales is actually to commercial or non-residential customers (e.g., local restaurants, local food banks, etc.). Future iterations of this work should quantify the percentage of grocery store
sales that is attributed to these non-residential customers by food type so that grocery sales can be discounted to only include residential sales. In the meantime, the resulting residential surplus estimates may be slightly overestimated.

Food Obtained from Grocery Stores vs Elsewhere

Raw data and documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Residential_GroceryRates.xlsx

Every two years the National Health And Nutrition Examination Survey (NHANES) ${ }^{58}$ is conducted as a partnership between the U.S. Department of Health and Human Services (DHHS) and the U.S. Department of Agriculture (USDA) to provide information on the health and nutritional status of people in the United States. In one portion of the study, participants are asked questions about their food intake over a two day period (e.g., food type and weight consumed, whether the food was obtained from a grocery store or restaurant, etc.). ReFED used this data to quantify the portion of each food type obtained from grocery stores versus other sources (e.g., restaurants, food pantries, convenience stores). See Appendix V as well as the raw data and documentation link above for details. The calculations were performed for each state, although the survey results are only available at the national level. Because food preferences and consumption patterns vary geographically, state-level data is needed in the future for better estimates.

Residential Food Surplus Rates

Raw data and documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Residential_FoodSurplusRates.xlsx

ReFED used the USDA Consumer-Level Food Loss Estimates ${ }^{59,15}$, which are the basis of the USDA ERS Loss-Adjusted Food Availability per Capita Dataset. The loss factors are based on 2004 data from Nielsen on how much food was sold at grocery stores as well as 2004 data from USDA NHANES58 on how much food was eaten by consumers and where the food was sourced (e.g., grocery stores, restaurants, convenience stores, etc.). ReFED originally attempted to reproduce the USDA methodology using up-todate Nielsen and NHANES data, but ended up reverting back to the original loss factors after running into the same issues that the USDA researchers faced when they originally developed the report. For several food items, the NHANES data estimates that consumers eat more than double the amount of a particular food item than was purchased in grocery stores according to the Nielsen data. The USDA research team addressed this issue by relying on expert panel estimates rather than the calculated estimates in these cases. ReFED plans to use the USDA loss factors (based on 2004 data) until more up-to-date consumption data is identified or developed. See Appendix W for details.

Residential Food Surplus Causes

Raw data and documentation:

- https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Residential_CauseBreakdown_2010-2014.xIsx
- https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Residential_CauseBreakdown_2015-2019.x|sx

As a part of a three-city study (New York, Nashville, Denver), Natural Resources Defense Council (NRDC) conducted an in-home study ${ }^{60}$ where participants documented the weight and type of foods wasted over a two week period. Participants also documented the reason why they wasted the food and what they did with it (e.g., disposed of down the drain, trash, fed to animals, composted). ReFED used this data to quantify the causes of residential food waste by year, state, and food type.
There are a few limitations to using this data source for this purpose: (1) Although the study results were similar across the cities covered, rural areas were not covered. If variations in disposal habits vary in rural areas versus cities, these variations are not captured in the data. (2) Another limitation is that the two week timespan may not have been long enough to capture refrigerator cleanouts, which may have resulted in an underestimation of causes such as date label expiration and unwanted leftovers if study participants postponed their refrigerator cleanouts until the study was over. (3) Finally, because it was a one-time study, the data does not provide insight into consumer changes in disposal habits over time. Although this causal data is invaluable for understanding the major drivers of food waste in homes, more research is needed to address these data gaps.

Residential Food Surplus Destinations

Raw data and documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Residential_FoodSurplusDestinations.xIsx

ReFED also used the NRDC Home Kitchen Diaries ${ }^{60}$ to quantify the destination breakdown of residential food surplus. The same strengths and weaknesses of the causal data listed above apply to the destinations component of the study as well. Additionally, it's possible that the residential composting numbers may be higher than the U.S. average due to selection bias of the people that chose to participate in the study.

ReFED further broke down the NRDC "Trash" numbers into the portion that is landfilled versus incinerated in each state according to BioCycle's 2010 "State of Garbage in America" survey ${ }^{16}$, which was conducted in partnership with the Earth Engineering Center of Columbia University. Because these surveys were discontinued in 2010 and no other state-level data sources exist, ReFED is reusing these estimates year over year to estimate the percentage of "trash" that is sent to incineration versus landfill facilities in each state.

Data Quality Evaluation

This rubric is designed to evaluate the quality of how each data source was utilized by ReFED to estimate food loss and waste. It is not meant to rate the quality of the study itself. See Appendix AA for more information about the ReFED Data Quality Rubric.

Table 20. Data Quality Evaluation for Food Waste Monitor Residential Sector

DATA	SOURCE	DATA QUALTY SCORE						
			$\begin{aligned} & \text { 는 } \\ & \frac{1}{4} \\ & \frac{8}{2} \\ & \frac{0}{5} \\ & \frac{9}{4} \end{aligned}$	u $\frac{1}{4}$ \vdots 8 8	\because $\stackrel{1}{2}$ 0 		SCORE	WEIGHT
RESIDENTIAL SURPLUS								
Retail Value Purchased at Grocery Stores	Nielsen Point-of-sale (POS) Data ${ }^{4}$	4	5	5	5	5	$\begin{gathered} \text { High } \\ 24 / 5=4.8 \end{gathered}$	17\%
Tons Purchased at Grocery Stores	Nielsen Point-of-sale (POS) Data ${ }^{44}$	4	5	5	5	5	$\begin{gathered} \text { High } \\ 24 / 5=4.8 \end{gathered}$	17\%
\% of Food Obtained from Grocery Stores	USDA NHANES Survey ${ }^{58}$	5	5	5	5	3	$\begin{gathered} \text { High } \\ 23 / 5=4.6 \end{gathered}$	33\%
Surplus Rate	USDA Consumer-Level Food Loss Estimates	5	1	5	3	3	Medium $17 / 5=3.4$	33\%
4.8 * 17\% + 4.8 * 17\% + 4.6 * 33\% + 3.4 * 33\% = 4.3							High	
RESIDENTIAL CAUSES								
\% Surplus due to Cause	NRDC Home Kitchen Diaries ${ }^{6}$	5	1	1	4	2	Low $13 / 5=2.6$	100\%
					2.2 * 100\% = 2.2		LOW	
RESIDENTIAL DESTINATIONS								
\% Destination Breakdown by Destination	NRDC Home Kitchen Diaries ${ }^{60}$	5	1	1	4	2	Low $13 / 5=2.6$	95\%
\% of trash landfilled vs incinerated	Biocycle/Columbia University Survey ${ }^{16}$	5	1	5	1	5	Medium $17 / 5=3.4$	5\%
			2.6 * 95\% + 3.4 * 5\% = 2.6				LOW	

WORKS CITED

1. Hanson, Craig, et al. Food Loss and Waste Accounting and Reporting Standard Version 1.0. 2016.
2. United States Department of Agriculture. "USDA/NASS QuickStats Ad-Hoc Query Tool." Quickstats. Nass.Usda.Gov, 2020, www.quickstats.nass.usda.gov/.
3. Johnson, Lisa K., et al. "Field Measurement in Vegetable Crops Indicates Need for Reevaluation of On-Farm Food Loss Estimates in North America." Agricultural Systems, vol. 167, Nov. 2018, pp. 136-142, https://doi.org/10.1016/j.agsy.2018.09.008, 10.1016/j.agsy.2018.09.008.
4. Johnson, Lisa K., et al. "Estimating On-Farm Food Loss at the Field Level: A Methodology and Applied Case Study on a North Carolina Farm." Resources, Conservation and Recycling, vol. 137, Oct. 2018, pp. 243-250, www.sciencedirect.com/science/article/pii/S0921344918301927, 10.1016/j. resconrec.2018.05.017.
5. Baker, Gregory A., et al. "On-Farm Food Loss in Northern and Central California: Results of Field Survey Measurements." Resources, Conservation and Recycling, vol. 149, Oct. 2019, pp. 541-549, https://doi.org/10.1016/j.resconrec.2019.03.022, 10.1016/j.resconrec.2019.03.022.
6. Kitinoja, Lisa, et al. Maximizing Farm Resources And Edible Food Rescue - Specialty Crop Loss Report. WWF, 2019. https://c402277.ssl.cf1.rackcdn.com/publications/1176/files/original/Farm_Technical_ Report_Revision3.pdf?1583770930
7. University of California Cooperative Extension. "Postharvest Handling Systems: Fruit Vegetables." Vric.Ucdavis.Edu, 2020, https://vric.ucdavis.edu/postharvest/fruitveg.htm\#:: :text=Field\%20 packing\&text=Mobile\%20packing\%20facilities\%20are\%20commonly,\%2C\%20summer\%20 squashes\%2C\%20and\%20peppers. Accessed 2020.
8. UC Davis Agricultural Issues Center. "Current Studies - UC Davis Cost Studies." Ucdavis.Edu, 2016, https://coststudies.ucdavis.edu/en/current/. Accessed 15 Nov. 2019.
9. California Artichoke Advisory Board. "California Artichoke Advisory Board » Artichoke Farms." Artichoke Farms, http://artichokes.org/artichoke-farms. Accessed 2020.
10. University of California Division of Agriculture and Natural Resources. "Asparagus: A Small-Scale Agriculture Alternative." Sfp.Ucdavis.Edu, http://sfp.ucdavis.edu/pubs/brochures/Asparagus/. Accessed 2020.
11. US Highbush Blueberry Council. "How Blueberries Grow - U.S. Highbush Blueberry Council." U.S. Highbush Blueberry Council, 2011, www.blueberrycouncil.org/growing-blueberries/how-blueberriesgrow/. Accessed 2020.
12. University of Georgia Extension. "Publications | UGA Cooperative Extension." Extension.Uga.Edu, https://extension.uga.edu/publications/. Accessed 2020.
13. USDA Risk Management Agency. "Cause of Loss \| RMA." Www.Rma.Usda.Gov, 10 Sept. 2019, www. rma.usda.gov/SummaryOfBusiness/CauseOfLoss.
14. Columbia University Earth Engineering Center (EEC). "Earth Engineering Center (EEC)." Earth. Engineering.Columbia.Edu, https://earth.engineering.columbia.edu/.
15. United States Department of Agriculture. "USDA ERS - Food Availability (Per Capita) Data System." Usda.Gov, 2018, www.ers.usda.gov/data-products/food-availability-per-capita-data-system/.
16. Shin, Dolly. Generation and Disposition of Municipal Solid Waste (MSW) in the United States -A National Survey. Columbia University Earth Engineering Center, 3 Jan. 2014,https://secureservercdn. net/198.71.233.199/epm.300.myftpupload.com/wp-content/uploads/2020/10/DollyShinThesis.pdf.
17. Bureau, US Census. "ASM Tables." The United States Census Bureau, www.census.gov/programssurveys/asm/data/tables.html. Accessed 2020.
18. Bureau, US Census. "Annual Retail Trade Survey: 2018." The United States Census Bureau, www. census.gov/data/tables/2018/econ/arts/annual-report.html. Accessed 2020.
19. ReFED. U.S. Grocery Retail Dollar-to-Weight Conversion Factors Report. 2020. https://www.refed. com/downloads/ReFED-U.S.-Grocery-Retail-Value-to-Weight-Conversion-Factors.pdf
20. U.S. Bureau of Labor Statistics. "QCEW Data Files: U.S. Bureau of Labor Statistics." Www.Bls.Gov, 2020, www.bls.gov/cew/datatoc.htm. Accessed 2020.
21. Tesco PLC. "Working with Suppliers." Tesco PLC, www.tescoplc.com/sustainability/product/foodwaste/suppliers/. Accessed 2020.
22. United States Department of Agriculture. "FoodData Central." Usda.Gov, 2019, fdc.nal.usda.gov/. Accessed 2020.
23. Bakerpedia. "Tortillas | Commercial Baking Specialties." BAKERpedia, 2020, bakerpedia.com/ specialties/tortillas/. Accessed 2020.
24. Cargill. "From Cacao Bean to Chocolate Bar - Cargill North America | Cargill." Www.Cargill.com, 2020, www.cargill.com/food-beverage/na/from-bean-to-bar\#:~:text=the\ beans\ from\ an\ average. Accessed 2020.
25. DAIReXNET. "How Many Pounds of Whole Milk Does It Take to Make a Pound of Butter? DAIReXNET." Dairy-Cattle.Extension.org, 2020, https://dairy-cattle.extension.org/how-many-pounds-of-whole-milk-does-it-take-to-make-a-pound-of-butter/\#:~:text=it\ takes\ 21.2\ pounds\ of. Accessed 2020.
26. Discovery UK. "Tea | How It's Made." YouTube, 31 May 2017, www.youtube.com/ watch?v=vAi1 qBV5n7I. Accessed 2020.
27. 27. George, Anthonia. "How Peanut Butter Is Made." The E-Portfolio of Anthonia George, 2015, https://sites.psu.edu/anthoniageorge/wp-content/uploads/sites/37046/2015/12/Peanut-butter-technical-description-pdf.pdf. Accessed 2020.
1. How it's Made. "How It's Made - Coffee - YouTube." Youtube.com, 2020, www.youtube.com/ watch?v=uhetmcjnpvi. Accessed 2020.
2. HowltsMade. "How It's Made - Tea." Youtube.com, 2020, www.youtube.com/watch?v=6djyh91f62c. Accessed 2020.
3. HowltsMade. "How It's Made-Butter." Www.Youtube.com, 13 July 2008, www.youtube.com/ watch?v=qwb2uZLSLhw. Accessed 2020.
4. HowltsMade. "How It's Made: Flour." YouTube, 2 Mar. 2014, www.youtube.com/ watch?v=u6k9zyi3OKo. Accessed 2020.
5. Ice Cream Science. "How to Calculate an Ice Cream Mix." Ice Cream Science, 27 Aug. 2017, https:// icecreamscience.com/calculate-ice-cream-mix/. Accessed 2020.
6. Instructables.com. "- YouTube." Youtube.com, 2020, www.youtube.com/watch?v=x|fp54vxblg. Accessed 2020.
7. Kidspot. "How to Make Evaporated Milk." Www.Bestrecipes.com.Au, 24 July 2014, www.bestrecipes. com.au/baking/articles/make-evaporated-milk/xlhwo8it. Accessed 2020.
8. Kitchen, Hebbars. "White Chocolate Recipe | Milk Chocolate Recipe | Homemade Chocolate Bars." Hebbar's Kitchen, 11 Nov. 2020, https://hebbarskitchen.com/homemade-chocolate-recipe-milkchocolate/. Accessed 2020.
9. Manley, Duncan. Biscuit, Cracker and Cookie Recipes for the Food Industry. Cambridge, Woodhead, 2001, www.academia.edu/40431055/Biscuit_cracker_and_cookie_recipes_for_the_food_industry. Accessed 2020.
10. Moist Tech Corp. "Dairy Powder Moisture | Gauge Dairy Powder Moisture." Moist Tech, 2020, www. moisttech.com/applications/human-food-moisture/dairy-powder-moisture/\#:~:text=checking\ moisture\%20content\%20for\%20powdered. Accessed 2020.
11. Nestle. "Bake Your Own Cheerios Breakfast Cereal." Global, 22 Mar. 2017, www.nestle-cereals.com/ global/en/recipes-tips/recipes/make-cheerios-cereal. Accessed 2020.
12. New England Cheese Making Supply Company. "Cheddar Cheese Making Recipe." New England Cheesemaking Supply Company, 2020, https://cheesemaking.com/products/cheddar-cheese-making-recipe. Accessed 2020.
13. wholesomesweet.com. "SUGAR | How It's Made." Www.Youtube.com, 2018, www.youtube.com/ watch?v=jCKt02NGjfM. Accessed 2020.
14. Wholesome. "How Much Sugar Cane Does It Take to Produce One Bag of Wholesome! Fair Trade Organic Sugar?" Wholesome Sweeteners, 2020, https://wholesomesweet.com/faqs/how-much-sugar-cane-does-it-take-to-produce-one-bag-of-wholesome-fair-trade-organic-sugar/\#:~:text=bag\ of\%20wholesome. Accessed 2020.
15. "Northstar Recycling Company - National Business Recycling." Northstar Recycling Company, Inc., https://northstarrecycling.com/.
16. Bureau, US Census. "ASM Tables." The United States Census Bureau, www.census.gov/programssurveys/asm/data/tables.html.
17. Nielsen. Nielsen Retail Measurement Point of Sale Data. 2019, www.nielsen.com/us/en/solutions/ measurement/retail-measurement/.
18. Bureau, US Census. "Annual Retail Trade Survey: 2018." The United States Census Bureau, www. census.gov/data/tables/2018/econ/arts/annual-report.html.
19. USDA Foreign Agriculture Service. "GATS Home." Global Agriculture Trade System, 2019, https:// apps.fas.usda.gov/gats/default.aspx.
20. Food Waste Reduction Alliance. FWRA Food Waste Survey 2016 Report Final. 2016. http://www. foodwastealliance.org/wp-content/uploads/2013/05/FWRA-Food-Waste-Survey-2016-Report_Final. pdf
21. Buzby, Jean, et al. Updated Supermarket Shrink Estimates for Fresh Foods and Their Implications for ERS Loss-Adjusted Food Availability Data. 2016. https://www.ers.usda.gov/webdocs/ publications/44100/eib-155.pdf?v=0
22. Food Marketing Institute. Supermarket Security and Loss Prevention Report. 2009.
23. Expert Interviews
24. Technomic Inc. "Ignite." Technomic, www.technomic.com/ignite.
25. Leanpath Inc. Pre-Consumer Surplus Rates, causes, and destination estimations, 2020. www. leanpath.com/.
26. Roe, Brian E., et al. "Plate Waste of Adults in the United States Measured in Free-Living Conditions." PLOS ONE, vol. 13, no. 2, 14 Feb. 2018, p. e0191813, https://pdfs.semanticscholar. org/4826/06faadbe956abcb605625c8cd220498f5bf3.pdf
27. Mike, von Massow. Restaurant Plate Waste: Relationship between Menu Items, Product Engineering and Profit. University of Guelph, 2013, https://vcm-international.com/wp-content/uploads/2013/05/ UofG-CME.pdf.
28. Food Waste Solution Pilots Case Study: PSU | ReFED. ReFED, 2018, https://www.refed.com/ downloads/PSUCaseStudyFinal.pdf.
29. Fogler-Levitt, E., et al. "Utilization of Home-Delivered Meals by Recipients 75 Years of Age or Older." Journal of the American Dietetic Association, vol. 95, no. 5, 1 May 1995, pp. 552-557, https://www. pubmed.ncbi.nlm.nih.gov/7722189/.
30. Smith, Stephanie L, and Leslie Cunningham-Sabo. "Food Choice, Plate Waste and Nutrient Intake of Elementary- and Middle-School Students Participating in the US National School Lunch Program." Public Health Nutrition, vol. 17, no. 6, 18 July 2013, pp. 1255-1263, https://www.researchgate.net/ publication/250918643_Food_choice_plate_waste_and_nutrient_intake_of_elementary-_and_middleschool_students_participating_in_the_US_National_School_Lunch_Program/citation/download.
31. USDA. "NHANES - National Health and Nutrition Examination Survey." Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, https://www.cdc.gov/nchs/nhanes/ index.htm.
32. Muth, Mary, et al. Consumer-Level Food Loss Estimates and Their Use in the ERS Loss-Adjusted Food Availability Data. 2011.https://www.ers.usda.gov/webdocs/publications/47570/8043_tb1927. pdf? $\mathrm{v}=7032$
33. NRDC. "Estimating Quantities and Types of Food Waste at the City Level", Oct. 2017, https://www. nrdc.org/resources/food-matters-what-we-waste-and-how-we-can-expand-amount-food-we-rescue.

APPENDIX

Appendix A: Farm Yield Left Behind After Harvest

The following table lists the percentage of yield left in fields after harvest crews were finished harvesting the fields for multiple studies. If a commodity is listed more than once, this indicates a separate field study for the same commodity. Because these studies only covered a limited number of commodities and states, these numbers were used extensively as proxies. For a complete list of proxy assignments, see ReFED's raw data and documentation here:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ YieldLeftBehindAfterHarvest.xlsx

STATE	COMMODITY	\% OF HARVESTED YIELD LEFT BEHIND AFTER HARVEST
STUDY: LISA JOHNSON, 2018 NC STATE: ESTIMATING ON-FARM FOOD LOSS AT THE FIELD LEVEL: A METHODOLOGY AND APPLIED CASE STUDY ON A NORTH CAROLINA FARM		
North Carolina	Green Cabbage	18\%
	Cucumber	154\%
	Cucumber	96\%
	Cucumber	138\%
	Cucumber	68\%
	Eggplant	169\%
	Green Bell Pepper	24\%
	Green Bell Pepper	55\%
	Yellow Squash	75\%
	Yellow Squash	64\%
	Yellow Squash	44\%
	Zucchini (field 1)	107\%
	Zucchini (field 2)	85\%

STATE	COMMODITY	\% OF HARVESTED YIELD LEFT BEHIND AFTER HARVEST
STUDY: LISA JOHNSON, 2018 NC STATE: FIELD MEASUREMENT IN VEGETABLE CROPS INDICATES NEED FOR REEVALUATION OF ON FARM FOOD LOSS ESTIMATES IN NORTH AMERICA		
North Carolina	Cabbage	29\%
	Cucumber	121\%
	Bell pepper	35\%
	Summer squash	85\%
	Winter squash	197\%
	Sweet corn	104\%
	Sweetpotato	28\%
	Watermelon	159\%
STUDY: WWF SPECIALTY CROP LOSS REPORT		
Florida	Tomatoes	41\%
New Jersey	Peaches	19\%
	Peaches	45\%
	Peaches	29\%
	Peaches	34\%
	Peaches	49\%
	Peaches	41\%
	Peaches	37\%
	Peaches	26\%
	Peaches	30\%
	Peaches	47\%
Idaho	Potatoes	2\%
	Potatoes	1\%
	Potatoes	2\%
	Potatoes	5\%
	Potatoes	3\%
	Potatoes	3\%

STATE	COMMODITY	\% OF HARVESTED YIELD LEFT BEHIND AFTER HARVEST
STUDY: GREG BAKER, 2019 UC SANTA CLARA: ON-FARM FOOD LOSS IN NORTHERN AND CENTRAL CALIFORNIA: RESULTS OF FIELD SURVEY MEASUREMENTS		
California	Artichokes, annual	8.50\%
	Artichokes, perennial	4.70\%
	Broccoli	15.90\%
	Brussels sprouts	13.20\%
	Bunch Spinach	20.90\%
	Cabbage	51.60\%
	Cantaloupe, LSL	9.70\%
	Cantaloupe, WS	14.20\%
	Cauliflower	34.10\%
	Celery	30.30\%
	Green beans	21.40\%
	Green Leaf Lettuce	43.30\%
	Iceberg Lettuce	22.60\%
	Kale	38.60\%
	Napa Cabbage	42\%
California	Roma Tomatoes	8.20\%
	Romaine Hearts	113.60\%
	Romaine Lettuce	39.50\%
	Round Tomatoes	6.40\%
	Strawberries	43.80\%
	Sweet Corn	4.50\%
	Watermelon	56.70\%

Appendix B: Farm Field Packing Rates for Fresh Market Produce

ReFED researched several prominent agriculture websites $7,8,9,1,11,12$ and consulted experts at the University of California Davis to estimate the percentage of each fresh market commodity that is packed in the field as opposed to being sent to a packhouse. For more information, see the field packed data tab of ReFED's raw data and documentation:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_Farm_ PackhouseLossRates.xlsx

ASSUMED 0\% FIELD PACKED	ASSUMED 50\% FIELD PACKED	ASSUMED 75\% FIELD PACKED	ASSUMED 100\% FIELD PACKED
Almonds	Blueberries	Artichokes	Blackberries
Apples	Cabbage		Boysenberries
Apricots	Pumpkins		Broccoli
Asparagus	Squash		Cantaloupe
Avocados			Cauliflower
Bananas			Celery
Carrots			Cucumbers
Cherries			Grapes
Chili peppers			Honeydew
Cranberries			Lettuce
Dates			Peppers
Figs			Raspberries
Garlic			Strawberries
Grapefruit			
Green beans			
Hazelnuts			
Kiwifruit			
Lemons			
Macadamias			
Nectarines			
Olives			
Onions			
Oranges			
Papayas			
Peaches			
Peanuts			
Pears			
Peas			
Pecans			
Pistachios			
Plums			
Potatoes			
Prunes			
Spinach			
Sweet corn			
Sweet potatoes			
Tangelos			
Tangerines			
Tomatoes			
Walnuts			
Watermelon			

Appendix C: Buyer Rejection Rates

ReFED consulted experts to estimate the percentage of food that is delivered by suppliers but rejected by commercial buyers.

REFED FOOD DEPARTMENT	ESTIMATED REJECTION RATE	
Breads \& Bakery		
Dairy \& Eggs		
Dry Goods	0.50%	
Fresh Meat \& Seafood		
Frozen	2.00%	
Ready-to-drink Beverages		
Prepared Foods		
Produce		

Appendix D: Causes of Fields Never Harvested (Walk-by Fields)

The following table displays example data for 2019 Michigan crop insurance claims for "All Other Crops" from the USDA Risk Management Agency ${ }^{13}$. Similar data is available for all years across all states for dozens of farm commodities.

EQUIVALENT REFED CAUSE NAME	USDA RISK MANAGEMENT AGENCY CROP INSURANCE CAUSE NAME	\# ACRES CLAIMED DUE TO CAUSE	\% OF ACRES CLAIMED DUE TO CAUSE
	Excess Moisture/Precipitation/Rain	13,667	83.80%
Drought	1,314	8.06%	
Fields Never Harvested (Bad Weather)	Cold Wet Weather	483	2.96%
Freeze	Hail	39	0.24%
Fields Never Harvested (Market Dynamics)	Decline in Price	34	0.21%
Frost	27	0.17%	
Fields Never Harvested Pests/disease)	Insects	534	3.27%
	Plant Disease	174	1.07%

Appendix E: Causes of Yield Left Behind After Harvest

2018 NC State Studies of fields in North Carolina3,4

Definitions:
Marketable but left behind: U.S. No. 1 grade or higher
Not marketable: Fit for human consumption but does not meet appearance quality standards for sale Inedible: Not fit for human consumption due to bruising, cracking, decay, or other physical damage

Appendix F: Causes of Packhouse Losses

2017 WWF Specialty Crop Loss Report ${ }^{6}$ of 16 packhouses (6 peach packhouses, 10 tomato packhouses)

Definitions:
Not marketable: Fit for human consumption but does not meet appearance quality standards for sale Inedible: Not fit for human consumption due to bruising, cracking, decay, or other physical damage

Appendix G: Destinations of Packhouse Losses

ReFED used data from the WWF Specialty Crop Loss Report ${ }^{6}$ to estimate the following breakdown of produce packhouse loss destinations:

COMMODITY	\#SITES	DESTINATION	MILLION LBS	\% TO DESTINATION
Tomatoes	6	Animal feed	40.2	70%
Peaches	10	Donated	1.5	3%
Peaches	1	Dumped	9.2	28%
Potatoes	4	Dumped	6.8	$\mathbf{2 8}$
Total	$\mathbf{2 1}$	Total	$\mathbf{5 7 . 7}$	$\mathbf{1 0 0 \%}$

Appendix H: Retail Margins

Each year the U.S. Census Bureau conducts the Annual Retail Trade Survey ${ }^{45}$, which includes gross margins from retail firms broken out by business types including grocery food and beverage stores.

	ESTIMATED ANNUAL GROSS MARGIN AS A
PEAR	PERCENTAGE OF SALES FOR FOOD AND BEVERAGE GROCERY STORES
2018	26.60%
2017	27.00%
2016	26.80%
2015	26.90%
2014	26.60%
2013	26.80%
2011	27.10%
2010	27.70%

Appendix I: Unshipped Product Rates and Ingredient Utilization Rates

ReFED used data from Tesco supplier food waste case studies ${ }^{21}$ to quantify the percentage of food

 manufacturing ingredients that get utilized in finished product as well as the percentage of finished manufactured food that does not ultimately get shipped to buyers. ReFED identified specific suppliers to serve as proxies for different manufacturing types. See the raw data and documentation for more information:- Ingredient Utilization Rates:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_RecipesAndUtilizationRates.xIsx
- Unshipped Product Rates:
https://refed-roadmap.s3-us-west-2.amazonaws.com/public_documentation/Documentation_ Manufacturing_UnshippedProductRates.xIsx

PROXY TESCO SUPPLIER CASE STUDY	INGREDIENT UTILIZATION RATE	UNSHIPPED PRODUCT RATE	USED AS A PROXY FOR THESE BUREAU OF LABOR STATISTICS MANUFACTURING TYPES
General Mills (Global) Food types: Dry goods Case study: https://www.tescoplc.com/ media/756422/general-mills-final-2020. pdf		N/A	

PROXY TESCO SUPPLIER CASE STUDY

INGREDIENT UNSHIPPED UTILIZATION RATE

PRODUCT
RATE

USED AS A PROXY FOR THESE BUREAU OF LABOR STATISTICS MANUFACTURING TYPES

Froneri (UK)
Food types: Ice cream Case study: https://www.tescoplc.com/ media/756390/froneri-final-2020.pdf

Premier Foods (UK)
Food types: Dry goods
Case study: https://www.tescoplc.com/ media/756402/premier_foods-final-2020. pdf

Mars (Global)
Food types: Confectionery, Dry Goods
Case study: https://www.tescoplc.com/
media/756426/mars-final-2020.pdf

		- Beet sugar manufacturing - Cane sugar manufacturing
Premier Foods (UK) Food types: Dry goods Case study: https://www.tescoplc.com/ media/756402/premier_foods-final-2020. pdf		

PROXY TESCO SUPPLIER CASE STUDY	INGREDIENT UTILIZATION RATE	UNSHIPPED PRODUCT RATE	USED AS A PROXY FOR THESE BUREAU OF LABOR STATISTICS MANUFACTURING TYPES
Avara Foods (UK) Food types: Poultry Case study: https://www.tescoplc.com/ media/756411/avara-foods-final-2020.pdf	99\%	0.02\%	- Poultry processing
Greencore Group (UK) Food types: Chilled, frozen, and ambient convenience foods Case study: https://www.tescoplc.com/ media/756392/greencore-final-2020.pdf	91\%	0.25\%	- Frozen specialty food
Premier Foods (UK) Food types: Dry goods Case study: https://www.tescoplc.com/ media/756402/premier_foods-final-2020. pdf	N/A	0.13\%	- Confectionery manufacturing from purchased chocolate - Coffee and tea manufacturing Note: There were a couple case studies
Nestle (UK) Food types: Confectionery, Healthcare nutrition, Catering products Case study: https://www.tescoplc.com/ media/756427/nestle-uk-final-2020.pdf	99\%	N/A	for confectionery suppliers, but the data they provided did not allow for the calculation of unshipped product. In those case studies, they did not specify whether the surplus was finished product or ingredients. Therefore, ReFED chose to use the Premier Foods case study as the proxy for chocolate and confectionery unshipped product rates.
Hilton Foods (Ireland) Food types: Beef, pork, lamb Case study: https://www.tescoplc.com/ media/756436/hilton-foods-final-2020.pdf	99\%	0.02\%	- Rendering and meat byproduct processing - Fats and oils refining and blending
Premier Foods (UK) Food types: Dry goods Case study: https://www.tescoplc.com/ media/756402/premier_foods-final-2020. pdf	Note: ReFED was unable to find recipe data for these manufacturing types, so unutilized ingredients were estimated to be zero. These categories only represent 7.57\% of value shipped.	0.13\%	- All other miscellaneous food manufacturing - Dried and dehydrated food manufacturing - Mayonnaise, dressing, and other prepared sauce manufacturing - Nonchocolate confectionery manufacturing - Soft drink manufacturing - rtd coffee and tea - Specialty canning spice and extract manufacturing

Appendix J: Destinations of Manufacturing Surplus

ReFED used custom-prepared food waste destinations data from Northstar Recycling ${ }^{42}$ to estimate the destination breakdown of food surplus by food manufacturing type. Northstar Recycling is a national waste and recycling company that manages waste for many food manufacturers across the U.S. and Canada. This dataset was used to estimate the destinations of both unutilized ingredients and finished product surplus as these surplus streams are mixed together in the data.

DESTINATION	BAKERY	CONFECTIONARY	DAIRY	NONPERISHABLES	SPECIALTY FROZEN	MEAT, POULTRY, \& SEAFOOD*
Donations**	1\%	1\%	1\%	1\%	1\%	--
Animal Feed	99\%	37\%	--	67\%	88\%	--
Anaerobic Digestion	--	<1\%	19\%	--	1\%	--
Composting	--	31\%	--	25\%	8\%	--
Land Application	--	--	80\%	3\%	--	--
Trash (Landfill or Incineration)	--	30\%	--	3\%	2\%	--
Industrial Uses	--	--	--	--	--	100\%
Sewer***	--	--	--	--	--	--
Dumping	--	--	--	--	--	--
Total	100\%	100\%	100\%	100\%	100\%	100\%

*Because Northstar does not manage food waste for any meat processing facilities, ReFED assumed that 100\% of unutilized ingredients at meat processing plants were sent to rendering (industrial uses).
**Northstar does not have visibility to food donations data for their clients, so ReFED assumed that 1% of unutilized ingredients are donated based on data from the 2016 Food Waste Reduction Alliance survey ${ }^{47}$ in which 9 manufacturers responded (6.2% of U.S. market share based on sales).
***Northstar does not have visibility to food washed down the sewer. This data was also not included in the FWRA surveys. Further research is needed to fill in this data gap.

Appendix K: Retail Unsold Food Rates: USDA Supermarket Shrink Estimates

ReFED mapped the USDA commodities from the USDA Supermarket Shrink Estimates ${ }^{15,48}$ to each ReFED Food Category. When no reasonable proxies existed for a specific category (e.g., Bagels), unsold food rates from Food Marketing Institute (FMI) Supermarket Security and Loss Prevention Report ${ }^{49}$ were used instead (see Appendix K). The following numbers are based on supplier purchases and customer sales data from five individual retailers representing 45 states and 2,900 stores. Find the full report at: www. ers.usda.gov/publications/eibeconomic-informationbulletin/eib155USDA COMMODITY
Barley products 12\%
Canned asparagus 6\%
Canned beans 6\%
Canned cabbage 6\%
Canned carrots 6\%
Canned chile peppers 6\%
Canned cucumbers 6\%
Canned green peas 6\%
Canned potatoes 6\%
Canned snap beans 6\%
Canned sweet corn 6\%
Canned tomatoes 6\%
Corn flour and meal 12\%
Corn hominy and grits 12\%
Corn starch 12\%
Dehydrated onions 6\%
Dehydrated potatoes 6\%
Dry beans 6\%
Dry black beans 6\%
Dry great northern beans 6\%
Dry lima beans 6\%
Dry navy beans 6\%
Dry peas and lentils 6\%
Dry pinto beans 6\%
Dry red kidney beans 6\%
Flour and meal 12\%
Oat products 12\%\% UNSOLD FOOD BY WEIGHT
USDA COMMODITY
Other canned vegetables 6\%
Other dry beans 6\%
Potato chips 6\%
Rye flour 12\%
Wheat flour 12\%
White and whole wheat flour 12\%
Frozen asparagus 6\%
Frozen broccoli 6\%
Frozen carrots 6\%
Frozen cauliflower 6\%
Frozen green peas 6\%
Frozen lima beans 6\%
Frozen potatoes 6\%
Frozen snap beans 6\%
Frozen spinach 6\%
Frozen sweet corn 6\%
Misc frozen vegetables 6\%
Other frozen vegetables 6\%
Prepared fruit or vegetables 13\%
Fresh artichokes 21\%
Fresh asparagus 16\%
Fresh bell peppers 11\%
Fresh broccoli 7\%
Fresh brussels sprouts 6\%
Fresh cabbage 7\%
Fresh carrots 7\%
Fresh cauliflower 17\%
Fresh celery 9\%
Fresh collard greens 44\%
Fresh cucumbers 12\%
Fresh eggplant 21\%
Fresh escarole 47\%
Fresh garlic 5\%
Fresh grapefruit 19\%
Fresh head lettuce 8\%\% UNSOLD FOOD BY WEIGHT

USDA COMMODITY	\% UNSOLD FOOD BY WEIGHT
Fresh kale	27\%
Fresh leaf lettuce	20\%
Fresh lemons	5\%
Fresh lima beans	12\%
Fresh limes	14\%
Fresh mustard greens	61\%
Fresh okra	40\%
Fresh onions	6\%
Fresh oranges	15\%
Fresh potatoes	8\%
Fresh pumpkin	18\%
Fresh radishes	23\%
Fresh snap beans	22\%
Fresh spinach	18\%
Fresh squash	23\%
Fresh sweet corn	2\%
Fresh sweet potatoes	4\%
Fresh tangerines	15\%
Fresh tomatoes	14\%
Fresh turnip greens	63\%
Greens	49\%
Lettuce	10\%
Potatoes	8\%
Grapefruit juice	6\%
Lemon juice	6\%
Lime juice	6\%
Orange juice	6\%

Appendix L: Retail Unsold Food Rates: FMI Supermarket Security and Loss Prevention Report

Based on 2008 FMI survey of 50 supermarket survey participants ${ }^{49}$

FMI FOOD DEPARTMENT	\% UNSOLD FOOD BY COST	\% UNSOLD FOOD BY RETAIL VALUE
Bakery	11.04%	3.93%
Deli	8.05%	4.46%
Produce	6.21%	5.14%
Meat and Seafood	5.62%	4.22%
Dairy	1.42%	0.86%
Dry Grocery	0.95%	2.06%
Frozen Foods	0.80%	0.51%

Appendix M: Causes of Retail Surplus

As a placeholder until further research can be done, ReFED developed estimates using data from Leanpath on the causes of unutilized food in foodservice combined with review and input from grocery retail subject matter experts. Leanpath is a technology company that helps foodservice companies track, weigh and analyze the amount of food that is wasted in commercial kitchens. Leanpath customers also indicate the reason the food was not used as well as the food type when using Leanpath's automated software system.

Steps taken to adapt the Leanpath foodservice cause data to be relevant for grocery retail:

1. Map Leanpath's food types to similar grocery retail food types (e.g., Produce, Dry goods).
2. Filter out data for causes that are not relevant to the retail sector (e.g., Catering overproduction is not relevant for a grocery retail Produce department).
3. Quantify the causal breakdown of unused food by food type.
4. Have grocery retail subject matter experts review the data and compare it with numbers they're used to seeing in the field and make adjustments accordingly.

\% UNSOLD FOOD DUE TO CAUSE			$\begin{aligned} & \text { u } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \text { un } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { N } \\ & \text { O } \end{aligned}$		
Date label concerns			63\%	63\%	64\%	75\%	11\%	10\%	6\%	40\%
Excess	Overproduction		--	--	--	--	--	--	36\%	--
Food safety	Food safety recall		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Mistakes \& malfunctions	Cooking issues		--	--	--	--	--	--	1\%	--
	Equipment issues		4\%	8\%	15\%	2\%	0\%	84\%	0\%	8\%
	Handling errors		6\%	5\%	4\%	4\%	88\%	5\%	1\%	50\%
Other	Other		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
	Theft		2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Spoiled			25\%	20\%	16\%	17\%	0\%	0\%	2\%	0\%
Trimmings \& byproducts			0\%	3\%	0\%	0\%	0\%	0\%	53\%	0\%
Total			100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%

Appendix N: Destinations of Retail Surplus

This data was obtained from a 2016 FWRA survey ${ }^{49}$ of grocery retailers in which 24 grocery retailers responded (35.3\% of U.S. market share based on sales).

DESTINATION MILLION POUNDS IN 2016					\% BY WEIGHT IN 2016				
	Large	Medium	Small	All Sizes	Large	Medium	Small	All Sizes	Used for Modeling*
Donations	363.5	27.3	0.1	390.8	19.01\%	16.76\%	3.94\%	18.81\%	19.10\%
Animal feed	359.3	15.2	0.1	378.8	19.01\%	9.33\%	3.94\%	18.24\%	18.53\%
Industrial uses	84.7	9.3	0.5	94.5	4.43\%	5.71\%	19.69\%	4.55\%	4.62\%
Anaerobic digestion	116.7	8.4	0	98.4	4.71\%	5.16\%	0.00\%	4.74\%	4.81\%
Composting	349.1	16.2	1.6	366.9	18.26\%	9.95\%	62.99\%	17.66\%	17.94\%
Incineration	161.2	0	0	95	4.97\%	0.00\%	0.00\%	4.57\%	4.64\%
Landfill**	518.27	78.67	0.04	596.98	27.11\%	48.30\%	1.57\%	28.74\%	29.19\%
Land application	23.7	0.2	0	23.9	1.24\%	0.12\%	0.00\%	1.15\%	1.17\%
Other*	18.1	7.6	0.2	31.8	1.26\%	4.67\%	7.87\%	1.53\%	0.00\%
Total	1,911.67	162.87	2.54	2,077.08	100\%	100\%	100\%	100\%	100\%

*Note that ReFED removed the portion of disposal listed as "Other" for modeling purposes.
**For improved state-level modeling, ReFED grouped together the Incineration and Landfill numbers into a "Trash" percentage. BioCycle survey data conducted in partnership with Columbia University was used to estimate state-specific landfill and incineration numbers.

Appendix O: Foodservice Food Type Breakdown and Wholesale Prices

ReFED used menu data from Technomic ${ }^{51}$ in combination with food ingredient breakdown data from USDA Food Data Central ${ }^{122}$ to estimate the food ingredient breakdown of multiple menus. The Technomic menu data listed all of the items on a menu for the Top 500 restaurants (e.g., Cheeseburger, Fries, etc.). ReFED mapped each menu item to the closest matching food item in the USDA Food Data Central database, which provides the ingredient weight breakdown of each food (e.g., A cheeseburger is 38\% ground beef, 27\% bread, 9\% cheese, 9\% tomato, 7% sauce, 7% pickles, 4\% lettuce). Each foodservice segment was assigned a proxy menu based on the top restaurant by sales in each segment (e.g., McDonald's menu was used as a proxy for Limited Service Burger Restaurants). For non-restaurant segments, a restaurant proxy menu was used. ReFED then calculated average wholesale price per Ib estimates for each foodservice segment by subtracting retailer markups ${ }^{45}$ from Nielsen retail prices ${ }^{19}$ for the hundreds of food categories (e.g., Cheese) mapped to each food department (e.g., Dairy \& Eggs).

FSR = Full Service Restaurants, LSR = Limited Service Restaurants

MENU	USED AS PROXY FOR THESE FOODSERVICE SEGMENTS	ESTMATED FOOD TYPE BREAKDOWN AND WHOLESALE PRICE PER LB
	FSR: Varied Menu Business \& Industry Caterers Colleges \& Universities Corrections Healthcare Hospitals Long-term Care Senior Living K-12 Education Lodging Military Recreation	Breads \& Bakery: 8\%

MENU	USED AS PROXY FOR THESE FOODSERVICE SEGMENTS	ESTIMATED FOOD TYPE BREAKDOWN AND WHOLESALE PRICE PER LB
Chick-fil-a	LSR: Chicken	Breads \& Bakery: 12\% Dairy \& Eggs: 14\% Dry Goods: 11\% Fresh Meat \& Seafood: 13\% Frozen: 0\% Produce: 9\% Ready-to-drink Beverages: 20\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.90
Chuy's	FSR: Mexican	Breads \& Bakery: 7\% Dairy \& Eggs: 10\% Dry Goods: 43\% Fresh Meat \& Seafood: 10\% Frozen: 0\% Produce: 14\% Ready-to-drink Beverages: 5\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.73
Custom Menu (ReFED Assumptions)	Refreshment Services	Breads \& Bakery: 0\% Dairy \& Eggs: 8\% Dry Goods: 3\% Fresh Meat \& Seafood: 0\% Frozen: 0\% Produce: 0\% Ready-to-drink Beverages: 59\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.29
Dairy Queen	LSR: Frozen Dessert	Breads \& Bakery: 6\% Dairy \& Eggs: 18\% Dry Goods: 19\% Fresh Meat \& Seafood: 5\% Frozen: 20\% Produce: 6\% Ready-to-drink Beverages: 5\%
		Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.73

MENU	USED AS PROXY FOR THESE FOODSERVICE SEGMENTS	ESTIMATED FOOD TYPE BREAKDOWN AND WHOLESALE PRICE PER LB
Domino's	LSR: Pizza	Breads \& Bakery: 3% Dairy \& Eggs: 4\% Dry Goods: 41\% Fresh Meat \& Seafood: 17\% Frozen: 0\% Produce: 15\% Ready-to-drink Beverages: 0\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.94
Famous Dave's	FSR: All Other	Breads \& Bakery: 10\% Dairy \& Eggs: 4\% Dry Goods: 17\% Fresh Meat \& Seafood: 36\% Frozen: 0\% Produce: 18\% Ready-to-drink Beverages: 9\% Total: 100\% Estimated 2019 Wholesale Price per Lb: $\$ 2.81$
IHOP	FSR: Family Style	Breads \& Bakery: 9\% Dairy \& Eggs: 28\% Dry Goods: 17\% Fresh Meat \& Seafood: 18\% Frozen: 1\% Produce: 14\% Ready-to-drink Beverages: 9\% Total: 100\% Estimated 2019 Wholesale Price per Lb: $\$ 2.10$
Krispy Kreme	LSR: All Other	Breads \& Bakery: 5\% Dairy \& Eggs: 41\% Dry Goods: 9\% Fresh Meat \& Seafood: 0\% Frozen: 0\% Produce: 0\% Ready-to-drink Beverages: 19\% Total: 100\% Estimated 2019 Wholesale Price per Lb: $\$ 0.96$

MENU	USED AS PROXY FOR THESE FOODSERVICE SEGMENTS	ESTIMATED FOOD TYPE BREAKDOWN AND WHOLESALE PRICE PER LB
McDonald's	LSR: Burger	Breads \& Bakery: 12\% Dairy \& Eggs: 30\% Dry Goods: 10\% Fresh Meat \& Seafood: 16\% Frozen: 1\% Produce: 8\% Ready-to-drink Beverages: 17\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.84
Olive Garden	FSR: Italian/pizza	Breads \& Bakery: 6\% Dairy \& Eggs: 12\% Dry Goods: 39\% Fresh Meat \& Seafood: 13\% Frozen: 0\% Produce: 5\% Ready-to-drink Beverages: 15\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.94
P.F. Chang's	FSR: Asian/noodle	Breads \& Bakery: 1\% Dairy \& Eggs: 2\% Dry Goods: 26\% Fresh Meat \& Seafood: 20\% Frozen: 0\% Produce: 19\% Ready-to-drink Beverages: 9\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$2.92
Panda Express	LSR: Asian/noodle	Breads \& Bakery: 0\% Dairy \& Eggs: 3\% Dry Goods: 18\% Fresh Meat \& Seafood: 20\% Frozen: 0\% Produce: 12\% Ready-to-drink Beverages: 11\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$2.71

MENU	USED AS PROXY FOR THESE FOODSERVICE SEGMENTS	ESTIMATED FOOD TYPE BREAKDOWN AND WHOLESALE PRICE PER LB
Red Lobster	FSR: Seafood	Breads \& Bakery: 1% Dairy \& Eggs: 5\% Dry Goods: 16\% Fresh Meat \& Seafood: 35\% Frozen: 0\% Produce: 20\% Ready-to-drink Beverages: 7\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$4.99
Starbucks	LSR: Coffee Cafe	Breads \& Bakery: 5\% Dairy \& Eggs: 35\% Dry Goods: 14\% Fresh Meat \& Seafood: 3\% Frozen: 0\% Produce: 5\% Ready-to-drink Beverages: 31\% Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.37
Subway	LSR: Sandwich	Breads \& Bakery: 17\% Dairy \& Eggs: 12\% Dry Goods: 10\% Fresh Meat \& Seafood: 23\% Frozen: 0\% Produce: 20\% Ready-to-drink Beverages: 5\% Total: 100\% Estimated 2019 Wholesale Price per Lb: $\$ 2.43$
Taco Bell	LSR: Mexican	Breads \& Bakery: 13\% Dairy \& Eggs: 18\% Dry Goods: 27\% Fresh Meat \& Seafood: 11\% Frozen: 0\% Produce: 7\% Ready-to-drink Beverages: 4\%
		Total: 100\% Estimated 2019 Wholesale Price per Lb: \$1.87

MENU	USED AS PROXY FOR THESE FOODSERVICE SEGMENTS	ESTIMATED FOOD TYPE BREAKDOWN AND WHOLESALE PRICE PER LB
Texas Roadhouse	FSR: Steak	Breads \& Bakery: 3\%
		Dairy \& Eggs: 7\%
		Dry Goods: 18\%
		Fresh Meat \& Seafood: 26\%
		Frozen: 0\%
		Produce: 25\%
		Ready-to-drink Beverages: 8\%
		Total: 100\%
		Estimated 2019 Wholesale Price per Lb: \$2.87

Appendix P: Plate Waste Rates

ReFED used multiple quantitative studies conducted by nonprofits, academics, and government organizations to estimate plate waste rates $53,54,55,56,57$. ReFED identified the latest, most suitable study available to use as a proxy for plate waste rates in each foodservice segment.

PLATE WASTE STUDY	PLATE WASTE RATE	USED AS A PROXY FOR THESE FOODSERVICE SEGMENTS
Ohio State University Plate waste of adults in the United States measured in freeliving conditions Study setting: Lab setting designed to mimic restaurants	39.06\%	Full Service Restaurants: - Asian/noodle - Family style - Italian/pizza - Mexican - Seafood - Steak - Varied menu - All other Lodging Recreation
University of Guelph Restaurant Plate Waste - Relationship between Menu Items, Product Engineering and Profit Study setting: Pub-style restaurants	11.30\%	Full Service Restaurants: - Sports bar Limited Service Restaurants: - Asian/noodle - Burger - Chicken - Coffee cafe - Frozen dessert - Mexican - Pizza - Sandwich - All other Bars and Taverns Transportation Other
ReFED/Compass Group Portland State University Case Study Study setting: All-you-can-eat university cafeteria	13.40\%	Business \& Industry Caterers Colleges \& Universities Corrections Military Refreshment Services
University of Toronto Utilization of home-delivered meals by recipients 75 years of age or older Study setting: Meals-on-wheels seniors food delivery	19\%	Healthcare: - Hospitals - Long-term care - Senior living

PLATE WASTE STUDY	PLATE WASTE RATE	USED AS A PROXY FOR THESE FOODSERVICE SEGMENTS
University of Northern Colorado Food choice, plate waste and nutrient intake of elementary- and middle-school students participating in the US National School Lunch Program	21.50%	K-12 Education
Study setting: K-12 school cafeterias		

Appendix Q: Catering Overproduction Rates

Based on expert interviews with catering organizations, ReFED estimated the percentage of food that is never served to clients at catering events. The results were the following:

CATERING STYLE	ESTIMATED OVERPRODUCTION RATE	USED AS A PROXY FOR THESE FOODSERVICE SEGMENTS
Buffets	28\%	Full Service Restaurants: - Asian/noodle - Italian/pizza - Mexican - Seafood - Steak - Varied menu - All other Caterers Colleges \& Universities Other
Breakfast and lunch	38\%	Full Service Restaurants: - Family style - Sports bar Limited Service Restaurants: - Asian/noodle - Burger - Chicken - Coffee cafe - Frozen dessert - Mexican - Pizza - Sandwich - All other Bars and Taverns Refreshment Services
Plated	13\%	This catering style was not used as a proxy for any segments.
Assumed zero catering	N/A	Healthcare: - Hospitals - Long-term care - Senior living Business \& Industry Corrections K-12 Education Lodging Military Recreation Transportation

Appendix R: Causes of Foodservice Pre-Consumer Surplus

ReFED used data from Leanpath ${ }^{52}$ to estimate the following causal breakdown of foodservice preconsumer surplus by food type. The following data is from 2019.

Proxy assignments:

- Business \& Industry used as proxy for: Military, Refreshment Services
- Education used as proxy for: Corrections, Other
- Hospitality used as proxy for : All restaurants, Bars and Taverns, Lodging, Recreation, Transportation, Caterers

CAUSES OF PRE-CONSUMER SURPLUS		FOODSERVICE SEGMENT			
		BUSINESS \& INDUSTRY	HOSPITALITY	HEALTHCARE	EDUCATION
BREADS \& BAKERY					
Date Label Concerns		39.50\%	38.40\%	63.50\%	40.70\%
Mistakes \& Malfunctions	Cooking issues	6.80\%	1.60\%	5.50\%	9.50\%
	Equipment issues	1.10\%	0.00\%	0.60\%	0.60\%
	Handling errors	2.40\%	6.30\%	3.00\%	4.30\%
Other		3.30\%	14.30\%	0.20\%	0.30\%
Spoiled		9.10\%	36.70\%	12.00\%	19.70\%
Trimmings \& Byproducts		37.80\%	2.70\%	15.30\%	25.00\%
Food Safety	Food safety recall	0\%	0\%	0\%	0\%
	Total	100\%	100\%	100\%	100\%
DAIRY \& EGGS					
Date Label Concerns		44.50\%	57.60\%	62.90\%	46.10\%
Mistakes \& Malfunctions	Cooking issues	3.90\%	3.20\%	3.70\%	5.20\%
	Equipment issues	10.10\%	1.10\%	7.00\%	5.40\%
	Handling errors	2.80\%	5.50\%	4.60\%	3.10\%
Other		0.20\%	0.80\%	0.20\%	0.20\%
Spoiled		11.20\%	29.10\%	14.10\%	24.10\%
Trimmings \& Byproducts		27.40\%	2.70\%	7.40\%	15.90\%
Food Safety	Food safety recall	0\%	0\%	0\%	0\%
	Total	100\%	100\%	100\%	100\%

CAUSES OF PRE-CONSUMER SURPLUS		FOODSERVICE SEGMENT			
		BUSINESS \& INDUSTRY	HOSPITALITY	HEALTHCARE	EDUCATION
DRY GOODS					
Date Label Concerns		51.40\%	57.80\%	56.30\%	52.60\%
Mistakes \& Malfunctions	Cooking issues	10.50\%	19.80\%	9.10\%	15.10\%
	Equipment issues	3.20\%	0.50\%	0.80\%	1.40\%
	Handling errors	5.80\%	3.20\%	3.60\%	5.00\%
Other		0.90\%	0.40\%	0.50\%	0.50\%
Spoiled		5.70\%	15.30\%	3.80\%	11.40\%
Trimmings \& Byproducts		22.50\%	3.00\%	25.90\%	14.10\%
Food Safety	Food safety recall	0\%	0\%	0\%	0\%
	Total	100\%	100\%	100\%	100\%
FRESH MEAT \& SEAFOOD					
Date Label Concerns		20.90\%	57.40\%	36.60\%	27.00\%
Mistakes \& Malfunctions	Cooking issues	2.50\%	5.00\%	5.60\%	5.10\%
	Equipment issues	2.60\%	0.70\%	1.40\%	1.40\%
	Handling errors	1.70\%	8.20\%	3.30\%	3.20\%
Other		0.20\%	1.50\%	0.30\%	0.30\%
Spoiled		6.50\%	18.40\%	8.80\%	13.60\%
Trimmings \& Byproducts		65.60\%	8.80\%	44.10\%	49.60\%
Food Safety	Food safety recall	0\%	0\%	0\%	0\%
	Total	100\%	100\%	100\%	100\%
FROZEN					
Date Label Concerns		7.00\%	31.10\%	There was no frozen food data available for Healthcare or Education, so the Business \& Industry frozen numbers were used as proxies.	
Mistakes \& Malfunctions	Cooking issues	11.80\%	0.00\%		
	Equipment issues	63.10\%	0.00\%		
	Handling errors	16.40\%	22.20\%		
Other		1.30\%	2.60\%		
Spoiled		0.00\%	36.30\%		
Trimmings \& Byproducts		0.50\%	7.80\%		
Food Safety	Food safety recall	0\%	0\%		
	Total	100\%	100\%		

CAUSES OF PRE-CONSUMER SURPLUS		FOODSERVICE SEGMENT			
		BUSINESS \& INDUSTRY	HOSPITALITY	HEALTHCARE	EDUCATION
PREPARED FOODS					
Date Label Concerns		39.70\%	64.60\%	54.00\%	42.00\%
Mistakes \& Malfunctions	Cooking issues	7.20\%	9.40\%	11.80\%	15.60\%
	Equipment issues	1.90\%	0.30\%	1.00\%	1.00\%
	Handling errors	3.20\%	5.80\%	4.60\%	5.30\%
Other		1.70\%	0.80\%	0.50\%	0.40\%
Spoiled		4.70\%	16.10\%	5.00\%	11.40\%
Trimmings \& Byproducts		41.60\%	3.00\%	23.10\%	24.30\%
Food Safety	Food safety recall	0\%	0\%	0\%	0\%
	Total	100\%	100\%	100\%	100\%
PRODUCE					
Date Label Concerns		4.90\%	25.00\%	17.50\%	7.70\%
Mistakes \& Malfunctions	Cooking issues	0.80\%	2.40\%	2.60\%	2.10\%
	Equipment issues	0.30\%	0.00\%	0.30\%	0.20\%
	Handling errors	0.50\%	2.00\%	0.50\%	0.90\%
Other		0.10\%	1.20\%	0.10\%	0.10\%
Spoiled		1.90\%	13.30\%	8.00\%	5.90\%
Trimmings \& Byproducts		91.60\%	56.00\%	71.10\%	83.00\%
Food Safety	Food safety recall	0\%	0\%	0\%	0\%
	Total	100\%	100\%	100\%	100\%
READY-TO-DRINK BEVERAGES					
Date Label Concerns		86.1	29.90\%	74.50\%	27.50\%
Mistakes \& Malfunctions	Cooking issues	1.30\%	0.00\%	2.00\%	1.60\%
	Equipment issues	4.40\%	0.00\%	2.50\%	6.10\%
	Handling errors	2.60\%	4.20\%	1.80\%	3.90\%
Other		0\%	21.20\%	1.60\%	0.70\%
Spoiled		3.20\%	44.30\%	8.30\%	3.10\%
Trimmings \& Byproducts		2.40\%	0.40\%	9.30\%	57.10\%
Food Safety	Food safety recall	0\%	0\%	0\%	0\%
	Total	100\%	100\%	100\%	100\%

Appendix S: Destinations of Foodservice Pre-Consumer Surplus

For most states, ReFED used data from the 2016 Food Waste Reduction Alliance (FWRA) survey ${ }^{47}$ of restaurants in which 28 restaurant companies responded (11.8\% of U.S. market share based on sales) to estimate the destination breakdown of pre-consumer surplus. Data on industrial uses (or biomaterials/ processing) was excluded because most of this is spent cooking oil rather than pre-consumer surplus. Since the FWRA data indicated that 94% of pre-consumer surplus is landfilled, which is not the case in states that have organics recycling laws, ReFED instead used data from Leanpath to estimate the pre-consumer surplus destinations for these states (California, Connecticut, Massachusetts, Oregon, Vermont, and Washington). ReFED did not use the Leanpath data for all other states to avoid selection bias as Leanpath clients may be more likely to compost food scraps than the average foodservice business.

FWRA Restaurant Survey Data:

DESTINATION MILLION POUNDS IN 2016					\% BY WEIGHT IN 2016				USED FOR MODELING *
	Large	Medium	Small	All Sizes Combined	Large	Medium	Small	All Sizes Combined	
Donations	38.3	0	0.9	39.2	2.51\%	0.00\%	26.39\%	2.01\%	2.09\%
Animal feed	0.3	0.1	0	0.4	0.02\%	0.02\%	0.00\%	0.02\%	0.02\%
Industrial uses**	70	4.3	0.2	74.5	4.59\%	1.01\%	5.87\%	3.81\%	0\%
Anaerobic digestion	0.4	0	0	0.4	0.03\%	0.00\%	0.00\%	0.02\%	0.02\%
Composting	5.9	0.2	1.2	7.3	0.39\%	0.05\%	35.19\%	0.37\%	0.38\%
Incineration***	0	0	0	0	0.00\%	0.00\%	0.00\%	0.00\%	--
Landfill***	1,409.43	422.08	1.11	1,832.62	92.43\%	98.92\%	32.55\%	93.74\%	--
Land application	0	0	0	0	0.00\%	0.00\%	0.00\%	0.00\%	0\%
Dumping	0	0	0	0	0.00\%	0.00\%	0.00\%	0.00\%	0\%
Sewer	0	0	0	0	0.00\%	0.00\%	0.00\%	0.00\%	0\%
Other	0.5	0	0	0.5	0.03\%	0.00\%	0.00\%	0.03\%	0\%
Trash	--	--	--	--	--	--	--	--	97.49\%
Total	1,525	427	3.41	1,955	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

*Note that ReFED removed the portion of disposal listed as "Other" for modeling purposes.
**Data on industrial uses (or biomaterials/processing) was excluded because most of this is spent cooking oil rather than pre-consumer surplus.
***For improved state-level modeling, ReFED grouped together the Incineration and Landfill numbers into a "Trash" percentage. BioCycle survey data conducted in partnership with Columbia University was used to estimate state-specific landfill and incineration numbers.

Leanpath pre-consumer surplus destinations data for states with organics recycling laws:	
DESTINATION	$\%$ DESTINATION
Donations	5%
Animal feed	2%
Industrial uses	0%
Anaerobic digestion	0%
Composting	78%
Trash (includes Landfill and Incineration)	15%
Land application	0%
Total	$\mathbf{1 0 0 \%}$

Appendix T: Destinations of Foodservice Plate Waste

ReFED assumed that plate waste was sent to "Trash" in all states, except states that have organics recycling laws. For these states (California, Connecticut, Massachusetts, Oregon, Vermont, and Washington), Leanpath plate waste destinations data was used instead ${ }^{52}$. ReFED did not use the Leanpath data for all other states to avoid selection bias as Leanpath clients may be more likely to compost food scraps than the average foodservice business.

Leanpath plate waste destinations data for states with organics recycling laws:

DESTINATION	\% OF PLATE WASTE SENT TO EACH DESTINATION
Donations	0%
Animal feed	0%
Industrial uses	0%
Anaerobic digestion	11%
Composting	$\mathbf{7 8} \%$
Trash (includes Landfill and Incineration)	1%
Land application	0%
Total	$\mathbf{1 0 0 \%}$

Appendix U: Destinations of Foodservice Catering Overproduction

ReFED assumed that catering overproduction was sent to "Trash" in all states, except states that have organic waste recycling laws. For states with organics recycling laws (California, Connecticut, Massachusetts, Oregon, Vermont, and Washington), Leanpath catering overproduction destinations data was used instead ${ }^{52}$. ReFED did not use the Leanpath data for all other states to avoid selection bias as Leanpath clients may be more likely to compost food scraps than the average foodservice business.

Leanpath catering overproduction destinations data for states with organics recycling laws:

DESTINATION	\% OF CATERING OVERPRODUCTION SENT TO				
EACH DESTINATION		$	$	Donations	24%
:---	:---:				
Animal feed	10%				
Industrial uses	0%				
Anaerobic digestion	0%				
Composting	44%				
Trash (includes Landfill and Incineration)	22%				
Land application	0%				
Total	$\mathbf{1 0 0 \%}$				

Appendix V: \% of Food Obtained From Grocery Stores

ReFED used USDA NHANES data ${ }^{58}$ to quantify the portion of each food type that is obtained from grocery stores versus other sources (e.g., restaurants, food pantries, convenience stores). These numbers were generated for each year dating back to 2010. The numbers in the table below are for 2019, using values from the most recent NHANES survey (2015-2016). See ReFED's raw data and documentation for more information: https://refed-roadmap.s3-us-west-2.amazonaws.com/public_ documentation/Documentation_Residential_GroceryRates.xIsx

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Breads \& Bakery	Artisan and specialty bread	94\%	6\%
	Bagels	94\%	6\%
	Brownies	75\%	25\%
	Cake	75\%	25\%
	Cheesecake	75\%	25\%
	Cookies	75\%	25\%
	Cupcakes	75\%	25\%
	Donuts	75\%	25\%
	English muffins and crumpets	75\%	25\%
	Flatbreads and pizza crusts	94\%	6\%
	Muffins	75\%	25\%
	Naan	94\%	6\%
	Other desserts	75\%	25\%
	Pies, cobblers, and crisps	75\%	25\%
	Pita bread	94\%	6\%
	Rolls and buns	94\%	6\%
	Sliced bread	94\%	6\%
	Soft tortillas	94\%	6\%
	Sweet goods	75\%	25\%
Dairy \& Eggs	Butter, margarine, and substitutes	96\%	4\%
	Buttermilk	95\%	5\%
	Cheese	96\%	4\%
	Creams and creamers	96\%	4\%
	Dairy milk	95\%	5\%
	Egg nog	96\%	4\%
	Eggs	92\%	8\%
	Lactose reduced/free milk	95\%	5\%

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Dairy \& Eggs	Liquid egg mix	92\%	8\%
	Plant-based dairy alternatives	95\%	5\%
	Refrigerated doughs	96\%	4\%
	Sour cream	96\%	4\%
	Yogurt	96\%	4\%
Dry Goods	Apple sauce	93\%	7\%
	Baby food	93\%	7\%
	Bagged or loose tea	93\%	7\%
	Baking chips and chocolate	93\%	7\%
	Baking cocoa	93\%	7\%
	Baking coconut	93\%	7\%
	Baking milks	93\%	7\%
	Baking mixes	93\%	7\%
	Baking nuts	93\%	7\%
	Baking powder	93\%	7\%
	Baking soda	93\%	7\%
	Baking sprinkles	93\%	7\%
	Baking yeast	93\%	7\%
	Bouillon	93\%	7\%
	Boxed dinners	93\%	7\%
	Breakfast syrups	93\%	7\%
	Broth	93\%	7\%
	Canned beans	93\%	7\%
	Canned fruit	93\%	7\%
	Canned meat and seafood	93\%	7\%
	Canned soup	93\%	7\%
	Canned vegetables	93\%	7\%
	Cereal	93\%	7\%
	Cereal and granola bars	93\%	7\%
	Chocolate candy	93\%	7\%
	Coating mixes and crumbs	93\%	7\%
	Coffee	93\%	7\%
	Coffee enhancers	93\%	7\%
	Coffee pods	93\%	7\%

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Dry Goods	Condiments	93\%	7\%
	Cookies	93\%	7\%
	Cooking oils	93\%	7\%
	Cooking syrups	93\%	7\%
	Cooking wine and vinegar	93\%	7\%
	Corn and other food starch	93\%	7\%
	Crackers	93\%	7\%
	Cranberry sauce	93\%	7\%
	Dessert toppings	93\%	7\%
	Diet and nutrition	93\%	7\%
	Dried fruit and vegetables	93\%	7\%
	Dry beans	93\%	7\%
	Edible cake decoration	93\%	7\%
	Flour and meal	93\%	7\%
	Frosting	93\%	7\%
	Fruit snacks	93\%	7\%
	Gift baskets	93\%	7\%
	Gnocchi and dumplings	93\%	7\%
	Grits	93\%	7\%
	Gum	93\%	7\%
	Hard shell tortillas	93\%	7\%
	Herbs, spices, and seasonings	93\%	7\%
	Hot cider	93\%	7\%
	Hot cocoa	93\%	7\%
	Jams and jellies	93\%	7\%
	Marshmallows	93\%	7\%
	Milk enhancers	93\%	7\%
	Mints	93\%	7\%
	Nut butters	93\%	7\%
	Nuts and seeds	93\%	7\%
	Oatmeal and hot cereal	93\%	7\%
	Other candy	93\%	7\%
	Other grains	93\%	7\%
	Other noodles	93\%	7\%

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Dry Goods	Other sauce, gravy, and marinades	93\%	7\%
	Pasta	93\%	7\%
	Pasta sauce	93\%	7\%
	Pickles, olives, and pickled vegetables	93\%	7\%
	Pie crusts	93\%	7\%
	Pie filling	93\%	7\%
	Pudding and gelatin	93\%	7\%
	Ramen	93\%	7\%
	Rice	93\%	7\%
	Salad dressing	93\%	7\%
	Salad toppings	93\%	7\%
	Salty snacks	93\%	7\%
	Sauce, soup, and seasoning mixes	93\%	7\%
	Shake and smoothie mix	93\%	7\%
	Shelf-stable dips and salsa	93\%	7\%
	Shortening and lard	93\%	7\%
	Snack cakes	93\%	7\%
	Specialty wraps	93\%	7\%
	Sugar and sweeteners	93\%	7\%
	Toaster pastries	93\%	7\%
	Tomato sauce and paste	93\%	7\%
Fresh Meat \& Seafood	Bacon	99\%	1\%
	Beef ribs	>99\%	<1\%
	Beef roast	>99\%	<1\%
	Chicken breast	98\%	2\%
	Chicken legs	98\%	2\%
	Chicken thighs	98\%	2\%
	Chicken wings	98\%	2\%
	Clams and mussels	>99\%	<1\%
	Crab	>99\%	<1\%
	Fowl and exotics	93\%	7\%
	Ground beef	>99\%	<1\%
	Ground chicken	98\%	2\%
	Ground turkey	98\%	2\%

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Fresh Meat \& Seafood	Ham	99\%	1\%
	Lamb	93\%	7\%
	Lobster	>99\%	<1\%
	Lunchmeat	93\%	7\%
	Meat alternatives	93\%	7\%
	Other beef	>99\%	<1\%
	Other chicken	98\%	2\%
	Other fish	>99\%	<1\%
	Other meat	93\%	7\%
	Other seafood	>99\%	<1\%
	Other shellfish	>99\%	<1\%
	Other turkey	98\%	2\%
	Oysters	>99\%	<1\%
	Pork	99\%	1\%
	Salmon	>99\%	<1\%
	Sausage and franks	93\%	7\%
	Shrimp	>99\%	<1\%
	Steaks	>99\%	<1\%
	Whole chicken	98\%	2\%
Frozen	Frozen appetizers	93\%	7\%
	Frozen bagels	93\%	7\%
	Frozen bakery desserts	93\%	7\%
	Frozen beans	93\%	7\%
	Frozen beef	>99\%	<1\%
	Frozen bread	93\%	7\%
	Frozen breakfast foods	93\%	7\%
	Frozen calzones and stromboli	93\%	7\%
	Frozen chicken	98\%	2\%
	Frozen dairy desserts	88\%	12\%
	Frozen dessert toppings	93\%	7\%
	Frozen dough and batters	93\%	7\%
	Frozen fruit	93\%	7\%
	Frozen fruit juice	93\%	7\%
	Frozen handheld entrees	93\%	7\%

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Frozen	Frozen lasagna	93\%	7\%
	Frozen mac and cheese	93\%	7\%
	Frozen meals	93\%	7\%
	Frozen meat alternatives	93\%	7\%
	Frozen pasta	93\%	7\%
	Frozen pie crust	93\%	7\%
	Frozen pizza	93\%	7\%
	Frozen pork	99\%	1\%
	Frozen pot pies	93\%	7\%
	Frozen potatoes	93\%	7\%
	Frozen rice	93\%	7\%
	Frozen rolls and buns	93\%	7\%
	Frozen sausage and franks	93\%	7\%
	Frozen seafood	>99\%	<1\%
	Frozen toaster pastries	93\%	7\%
	Frozen turkey	98\%	2\%
	Other frozen desserts	93\%	7\%
	Other frozen meat	93\%	7\%
	Other frozen vegetables	93\%	7\%
Prepared Foods	Appetizers	25\%	75\%
	Breakfast foods	25\%	75\%
	Calzones or stromboli	25\%	75\%
	Chilled salsa, dips, and spreads	25\%	75\%
	Deli cheeses	94\%	6\%
	Deli lunchmeat	94\%	6\%
	Deli salads	25\%	75\%
	Deli trays	25\%	75\%
	Fully cooked beef	25\%	75\%
	Fully cooked chicken	25\%	75\%
	Fully cooked pork	25\%	75\%
	Fully cooked turkey	25\%	75\%
	Handheld entrees	25\%	75\%
	Hummus	25\%	75\%
	Lasagna	25\%	75\%

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Prepared Foods	Mac and cheese	25\%	75\%
	Meal kits	25\%	75\%
	Meat alternatives	94\%	6\%
	Other meat	25\%	75\%
	Pasta	25\%	75\%
	Pizza	25\%	75\%
	Pot pies	25\%	75\%
	Potatoes	25\%	75\%
	Prepared fruit or vegetables	25\%	75\%
	Prepared meals	25\%	75\%
	Rice	25\%	75\%
	Sandwiches	25\%	75\%
	Snack combos	25\%	75\%
	Soups, stews, and broth	25\%	75\%
	Sushi	25\%	75\%
Produce	Apples	91\%	9\%
	Apricots	91\%	9\%
	Artichokes	91\%	9\%
	Asparagus	91\%	9\%
	Avocados	91\%	9\%
	Bananas	91\%	9\%
	Bell peppers	91\%	9\%
	Blackberries	91\%	9\%
	Blueberries	91\%	9\%
	Broccoli	91\%	9\%
	Brussel sprouts	91\%	9\%
	Cabbage	91\%	9\%
	Cantaloupe	91\%	9\%
	Carrots	91\%	9\%
	Cauliflower	91\%	9\%
	Celery	91\%	9\%
	Cherries	91\%	9\%
	Chili peppers	91\%	9\%
	Clementines, mandarins, and tangerines	91\%	9\%

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Produce	Coconut	91\%	9\%
	Cranberries	91\%	9\%
	Cucumbers	91\%	9\%
	Dipped fruit	91\%	9\%
	Eggplant	91\%	9\%
	Figs	91\%	9\%
	Fruit or vegetable trays	91\%	9\%
	Garlic	91\%	9\%
	Grapefruit	91\%	9\%
	Grapes	91\%	9\%
	Green beans	91\%	9\%
	Greens	91\%	9\%
	Honeydew	91\%	9\%
	Kale	91\%	9\%
	Kiwis	91\%	9\%
	Leeks	91\%	9\%
	Lemons	91\%	9\%
	Lettuce	91\%	9\%
	Limes	91\%	9\%
	Mangos	91\%	9\%
	Mixed vegetables	91\%	9\%
	Mushrooms	91\%	9\%
	Nectarines	91\%	9\%
	Onions	91\%	9\%
	Oranges	91\%	9\%
	Other beans	91\%	9\%
	Other berries	91\%	9\%
	Other citrus	91\%	9\%
	Other fruit	91\%	9\%
	Other melons	91\%	9\%
	Other squash	91\%	9\%
	Other vegetables	91\%	9\%
	Packaged salads	91\%	9\%
	Papayas	91\%	9\%

REFED FOOD DEPARTMENT	REFED FOOD CATEGORY	\% OF FOOD OBTAINED FROM GROCERY STORES	\% OF FOOD OBTAINED ELSEWHERE
Produce	Peaches	91\%	9\%
	Pears	91\%	9\%
	Peas	91\%	9\%
	Pineapples	91\%	9\%
	Plums	91\%	9\%
	Pomegranates	91\%	9\%
	Potatoes	91\%	9\%
	Pumpkins	91\%	9\%
	Radishes	91\%	9\%
	Raspberries	91\%	9\%
	Root vegetables	91\%	9\%
	Spinach	91\%	9\%
	Sprouts	91\%	9\%
	Squash	91\%	9\%
	Strawberries	91\%	9\%
	Sweet corn	91\%	9\%
	Tomatoes	91\%	9\%
	Value added fruit	91\%	9\%
	Value added vegetables	91\%	9\%
	Watermelons	91\%	9\%
Ready-to-drink Beverages	Coffee	87\%	13\%
	Fruit and vegetable juice	87\%	13\%
	Other drinks	87\%	13\%
	Shakes and smoothies	87\%	13\%
	Sparkling juice	87\%	13\%
	Tea	87\%	13\%

Appendix W: Residential Surplus Rates

```
ReFED used consumer loss estimates from the USDA ERS Loss-Adjusted Food Availability (LAFA)
Dataset59,15 to estimate residential losses by food type. Not all food types were covered by the LAFA
dataset. When exact matches did not exist, proxies were assigned.
```

USDA COMMODITY	\% RESIDENTIAL SURPLUS RATE
2 percent milk	20\%
Apple juice	10\%
Baking milks	26\%
Barley products	14\%
Beef	20\%
Butter	35\%
Butter, margarine, and substitutes	35\%
Buttermilk	18\%
Cane and beet sugar	34\%
Canned fruit	11\%
Canned meat and seafood	18\%
Canned olives	25\%
Canned plums	26\%
Canned Tuna	17\%
Canned vegetables	18\%
Cheese	20\%
Chicken	15\%
Coconut	10\%
Cooking syrups	26\%
Corn flour and meal	20\%
Corn hominy and grits	20\%
Corn starch	20\%
Dairy milk	20\%
Dried fruit and vegetables	22\%
Dry beans	10\%
Eggnog	51\%
Eggs	23\%
Flour and meal	20\%
Fresh and frozen fish	40\%
Fresh apples	20\%
Fresh apricots	10\%
Fresh artichokes	18\%

USDA COMMODITY
Fresh asparagus 18\%
Fresh avocados 33\%
Fresh bananas 20\%
Fresh bell peppers 39\%
Fresh blueberries 8\%
Fresh broccoli 12\%
Fresh Brussels sprouts 12\%
Fresh cabbage 24\%
Fresh cantaloupe 43\%
Fresh carrots 34\%
Fresh cauliflower 9\%
Fresh celery 39\%
Fresh cherries 51\%
Fresh cranberries 26\%
Fresh cucumbers 32\%
Fresh eggplant 26\%
Fresh garlic 43\%
Fresh grapefruit 20\%
Fresh grapes 33\%
Fresh head lettuce 24\%
Fresh honeydew 43\%
Fresh kale 38\%
Fresh kiwi 45\%
Fresh leaf lettuce 24\%
Fresh lemons 44\%
Fresh limes 44\%
Fresh mangoes 13\%
Fresh mushrooms 21\%
Fresh onions 43\%
Fresh oranges 36\%
Fresh papaya 20\%
Fresh peaches 42\%
Fresh pears 20\%
Fresh pineapple 37\%
Fresh plums 27\%
Fresh potatoes 16\%
Fresh pumpkin 69\%
\% RESIDENTIAL SURPLUS RATE
USDA COMMODITY
Fresh radishes 47\%
Fresh raspberries 20\%
Fresh snap beans 24\%
Fresh spinach 9\%
Fresh squash 25\%
Fresh strawberries 35\%
Fresh sweet corn 32\%
Fresh tangerines 52\%
Fresh tomatoes 7\%
Fresh watermelon 13\%
Frozen dairy desserts 24\%
Frozen fruit 27\%
Frozen lima beans 27\%
Frozen potatoes 16\%
Fruit and vegetable juice 11\%
Greens 38\%
Half and half 12\%
High fructose corn syrup 34\%
Ice cream 24\%
Lamb 20\%
Lettuce 24\%
Nuts and seeds 15\%
Oat products 14\%
Other frozen vegetables 25\%
Other meat 24%
Pork 29\%
Potato chips 4\%
Potatoes 21\%
Rice 33\%
Salad and cooking oils 15\%
Shortening 35\%
Sour cream 8\%
Sugar and sweeteners 28\%
Turkey 35\%
White and whole wheat flour 20\%
Yogurt 21\%\% RESIDENTIAL SURPLUS RATE

Appendix X: Causes of Residential Surplus

ReFED used data from NRDC Home Kitchen Diaries ${ }^{60}$ to estimate the causal breakdown of residential food waste. Study averages were used, because there was very little variation in results across the three areas studied (New York City, Nashville, and Denver). ReFED mapped the NRDC reason names to the ReFED equivalent cause names.

REFED RESIDENTIAL CAUSES		NRDC HOME KITCHEN STUDY EQUIVALENT	\% DUE TO CAUSE
BREADS \& BAKERY			
Date label concerns		Past due	5.10\%
Excess	Didn't taste good	Don't like the taste	8.80\%
	Didn't want leftovers	Don't want as leftovers	13.30\%
	Too little to save	Too little to save	6.30\%
Food safety	Food safety recall	N/A	0.00\%
	Left out too long	Left out too long	13.60\%
Mistakes \& malfunctions	Cooking issues	Improperly cooked	0.50\%
Other		Other/Unknown	6.90\%
Spoiled		Moldy/spoiled	41.00\%
Trimmings \& byproducts	Considered inedible	Inedible parts_edible	4.60\%
	Inedible parts	Inedible parts_inedible	0.00\%
			100\%
DAIRY \& EGGS			
Date label concerns		Past due	30.00\%
Excess	Didn't taste good	Don't like the taste	2.60\%
	Didn't want leftovers	Don't want as leftovers	6.10\%
	Too little to save	Too little to save	2.00\%
Food safety	Food safety recall	N/A	0.00\%
	Left out too long	Left out too long	5.70\%
Mistakes \& malfunctions	Cooking issues	Improperly cooked	0.20\%
Other		Other/Unknown	6.60\%
Spoiled		Moldy/spoiled	21.80\%
Trimmings \& byproducts	Considered inedible	Inedible parts_edible	0.80\%
	Inedible parts	Inedible parts_inedible	24.10\%
			100\%

REFED RESIDENTIAL CAUSES		NRDC HOME KITCHEN STUDY EQUIVALENT		\% DUE TO CAUSE
DRY GOODS				
Date label concerns		Past due		6.50\%
Excess	Didn't taste good	Don't like the taste		8.80\%
	Didn't want leftovers	Don't want as leftovers		19.20\%
	Too little to save	Too little to save		9.20\%
Food safety	Food safety recall	N/A		0.00\%
	Left out too long	Left out too long		14.50\%
Mistakes \& malfunctions	Cooking issues	Improperly cooked		2.30\%
Other		Other/Unknown		7.70\%
Spoiled		Moldy/spoiled		21.30\%
Trimmings \& byproducts	Considered inedible	Inedible parts_edible		4.00\%
	Inedible parts	Inedible parts_inedible		6.40\%
			Total	100\%
FRESH MEAT \& SEAFOOD				
Date label concerns	Date label concerns	Past due		2.80\%
Excess	Didn't taste good	Don't like the taste		2.50\%
	Didn't want leftovers	Don't want as leftovers		10.50\%
	Too little to save	Too little to save		2.10\%
Food safety	Food safety recall	N/A		0.00\%
	Left out too long	Left out too long		3.70\%
Mistakes \& malfunctions	Cooking issues	Improperly cooked		0.10\%
Other		Other/Unknown		4.80\%
Spoiled		Moldy/spoiled		13.80\%
Trimmings \& byproducts	Considered inedible	Inedible parts_edible		14.40\%
	Inedible parts	Inedible parts_inedible		45.60\%
			Total	100\%

REFED RESIDENTIAL CAUSES		NRDC HOME KITCHEN STUDY EQUIVALENT	\% DUE TO CAUSE
FROZEN			
Date label concerns		Past due	0.00\%
Excess	Didn't taste good	Don't like the taste	0.00\%
	Didn't want leftovers	Don't want as leftovers	17.20\%
	Too little to save	Too little to save	11.10\%
Food safety	Food safety recall	N/A	0.00\%
	Left out too long	Left out too long	0.00\%
Mistakes \& malfunctions	Cooking issues	Improperly cooked	0.00\%
Other		Other/Unknown	2.80\%
Spoiled		Moldy/spoiled	68.90\%
Trimmings \& byproducts	Considered inedible	Inedible parts_edible	0.00\%
	Inedible parts	Inedible parts_inedible	0.00\%
			100\%
PREPARED FOODS			
Date label concerns		Past due	4.20\%
Excess	Didn't taste good	Don't like the taste	7.30\%
	Didn't want leftovers	Don't want as leftovers	29.20\%
	Too little to save	Too little to save	10.10\%
Food safety	Food safety recall	N/A	0.00\%
	Left out too long	Left out too long	8.60\%
Mistakes \& malfunctions	Cooking issues	Improperly cooked	0.80\%
Other		Other/Unknown	7.90\%
Spoiled		Moldy/spoiled	18.60\%
Trimmings \& byproducts	Considered inedible	Inedible parts_edible	6.60\%
	Inedible parts	Inedible parts_inedible	6.60\%
			100\%

REFED RESIDENTIAL CAUSES		NRDC HOME KITCHEN STUDY EQUIVALENT	\% DUE TO CAUSE
PRODUCE			
Date label concerns		Past due	0.90\%
Excess	Didn't taste good	Don't like the taste	2.50\%
	Didn't want leftovers	Don't want as leftovers	2.10\%
	Too little to save	Too little to save	1.40\%
Food safety	Food safety recall	N/A	0.00\%
	Left out too long	Left out too long	3.70\%
Mistakes \& malfunctions	Cooking issues	Improperly cooked	0.30\%
Other		Other/Unknown	3.80\%
Spoiled		Moldy/spoiled	22.80\%
Trimmings \& byproducts	Considered inedible	Inedible parts_edible	16.20\%
	Inedible parts	Inedible parts_inedible	46.40\%
			100\%
READY-TO-DRINK BEVERAGES			
Date label concerns		Past due	2.30\%
Excess	Didn't taste good	Don't like the taste	2.10\%
	Didn't want leftovers	Don't want as leftovers	6.60\%
	Too little to save	Too little to save	2.70\%
Food safety	Food safety recall	N/A	0.00\%
	Left out too long	Left out too long	8.60\%
Mistakes \& malfunctions	Cooking issues	Improperly cooked	0.00\%
Other		Other/Unknown	5.40\%
Spoiled		Moldy/spoiled	0.80\%
Trimmings \& byproducts	Considered inedible	Inedible parts_edible	4.60\%
	Inedible parts	Inedible parts_inedible	66.80\%
			100\%

Appendix Y: Destinations of Residential Surplus

ReFED used data from NRDC Home Kitchen Diaries ${ }^{60}$ to estimate the destination breakdown of residential food waste. Study averages were used, because there was very little variation in results across the three areas studied (New York City, Nashville, and Denver).

DESTINATIONS OF RESIDENTIAL SURPLUS	
BREADS \& BAKERY	
Destination	\% Sent to Destination
Anaerobic digestion	0\%
Animal feed	5\%
Industrial uses	0\%
Composting	28\%
Donations	0\%
Land application	0\%
Dumping	0\%
Sewer	5\%
Trash	63\%
Total	100\%
DAIRY \& EGGS	
Destination	\% Sent to Destination
Anaerobic digestion	0\%
Animal feed	1\%
Industrial uses	0\%
Composting	18\%
Donations	0\%
Land application	0\%
Dumping	0\%
Sewer	48\%
Trash	34\%
Total	100\%

DESTINATIONS OF RESIDENTIAL SURPLUS	
DRY GOODS	
Destination	\% Sent to Destination
Anaerobic digestion	0\%
Animal feed	2\%
Industrial uses	0\%
Composting	31\%
Donations	0\%
Land application	0\%
Dumping	0\%
Sewer	10\%
Trash	57\%
Total	100\%
FRESH MEAT \& SEAFOOD	
Destination	\% Sent to Destination
Anaerobic digestion	0\%
Animal feed	2\%
Industrial uses	0\%
Composting	25\%
Donations	0\%
Land application	0\%
Dumping	0\%
Sewer	3\%
Trash	71\%
Total	100\%
FROZEN	
Destination	\% Sent to Destination
Anaerobic digestion	0\%
Animal feed	0\%
Industrial uses	0\%
Composting	11\%
Donations	0\%
Land application	0\%
Dumping	0\%
Sewer	18\%
Trash	71\%
Total	100\%

DESTINATIONS OF RESIDENTIAL SURPLUS	
PREPARED FOODS	
Destination	\% Sent to Destination
Anaerobic digestion	0\%
Animal feed	2\%
Industrial uses	0\%
Composting	24\%
Donations	0\%
Land application	0\%
Dumping	0\%
Sewer	14\%
Trash	60\%
Total	100\%
PRODUCE	
Destination	\% Sent to Destination
Anaerobic digestion	0\%
Animal feed	0\%
Industrial uses	0\%
Composting	46\%
Donations	0\%
Land application	0\%
Dumping	0\%
Sewer	1\%
Trash	52\%
Total	100\%
READY-TO-DRINK BEVERAGES	
Destination	\% Sent to Destination
Anaerobic digestion	0\%
Animal feed	0\%
Industrial uses	0\%
Composting	37\%
Donations	0\%
Land application	0\%
Dumping	0\%
Sewer	27\%
Trash	36\%
Total	100\%

Appendix Z: Landfill and Incineration Rates

Data Source: BioCycle State of Garbage in America Surveys conducted in partnership with the Earth Engineering Center at Columbia University ${ }^{16}$

STATE	TONS INCINERATED	TONS LANDFILLED	\% OF TRASH INCINERATED	\% OF TRASH LANDFILLED
Alabama	178,044	4,731,661	3.63\%	96.37\%
Alaska	0	646,910	0.00\%	100.00\%
Arizona	0	6,606,097	0.00\%	100.00\%
Arkansas	0	3,275,571	0.00\%	100.00\%
California	861,891	30,033,604	2.79\%	97.21\%
Colorado	0	6,135,556	0.00\%	100.00\%
Connecticut	2,153,083	247,075	89.71\%	10.29\%
Delaware	0	691,094	0.00\%	100.00\%
Florida	5,786,757	13,871,991	29.44\%	70.56\%
Georgia	0	9,869,457	0.00\%	100.00\%
Hawaii	547,667	2,450,907	18.26\%	81.74\%
Idaho	0	1,667,847	0.00\%	100.00\%
Illinois	0	12,130,698	0.00\%	100.00\%
Indiana	702,041	4,882,080	12.57\%	87.43\%
Iowa	39,309	2,696,572	1.44\%	98.56\%
Kansas	0	2,263,265	0.00\%	100.00\%
Kentucky	0	4,194,118	0.00\%	100.00\%
Louisiana	0	5,164,994	0.00\%	100.00\%
Maine	473,044	213,223	68.93\%	31.07\%
Maryland	1,391,293	2,351,654	37.17\%	62.83\%
Massachusetts	3,173,765	1,534,237	67.41\%	32.59\%
Michigan	992,175	11,947,446	7.67\%	92.33\%
Minnesota	1,147,771	1,787,325	39.11\%	60.89\%
Mississippi	0	2,728,531	0.00\%	100.00\%
Missouri	0	3,966,245	0.00\%	100.00\%
Montana	0	1,365,431	0.00\%	100.00\%
Nebraska	0	2,218,268	0.00\%	100.00\%
Nevada	0	2,808,133	0.00\%	100.00\%
New Hampshire	251,805	402,888	38.46\%	61.54\%
New Jersey	2,128,772	4,387,878	32.67\%	67.33\%
New Mexico	0	1,980,841	0.00\%	100.00\%

STATE	TONS INCINERATED	TONS LANDFILLED	\% OF TRASH INCINERATED	\% OF TRASH LANDFILLED
New York	3,678,169	10,271,114	26.37\%	73.63\%
North Carolina	0	7,702,858	0.00\%	100.00\%
North Dakota	0	675,070	0.00\%	100.00\%
Ohio	0	9,126,983	0.00\%	100.00\%
Oklahoma	205,496	4,396,649	4.47\%	95.53\%
Oregon	181,474	1,917,315	8.65\%	91.35\%
Pennsylvania	3,081,583	5,908,723	34.28\%	65.72\%
Rhode Island	0	793,333	0.00\%	100.00\%
South Carolina	0	3,296,946	0.00\%	100.00\%
South Dakota	0	646,797	0.00\%	100.00\%
Tennessee	0	6,037,529	0.00\%	100.00\%
Texas	0	23,730,742	0.00\%	100.00\%
Utah	126,778	2,058,868	5.80\%	94.20\%
Vermont	0	379,081	0.00\%	100.00\%
Virginia	2,042,856	10,091,402	16.84\%	83.16\%
Washington	272,842	4,110,230	6.22\%	93.78\%
West Virginia	0	1,812,675	0.00\%	100.00\%
Wisconsin	73,456	4,181,333	1.73\%	98.27\%
Wyoming	0	609,724	0.00\%	100.00\%

Appendix AA: Data Quality Rubric

ReFED developed the following rubric to evaluate the quality of each data source utilized to estimate food loss and waste.

CRITERIA	DATA QUALITY SCORE				
	1	2	3	4	5
Credibility	Data source undisclosed	Data lacks a full study it can be linked to	Data is selfreported and not vetted by an external organization	Data is selfreported but vetted by an external organization or is a proprietary source from a data company	Data has been vetted and approved through peer review or is a government data source
Update Frequency	One-time	Updated every 6+ years	Updated every 3-5 years	Every other year	Annual or more frequent
Coverage	Data represents less than 20% of sector	Data represents 20-49\% of sector	Data represents 50-69\% of sector	Data represents 70-84\% of sector	Data represents 85% or more of sector
Food Type	Not food type specific	Proxy assignments made across unsimilar food types	Proxy assignments made, but within roughly similar food types	Proxy assignments made, but within very similar food types	Zero or very few proxy food type assignments necessary
Geography	Site-specific (e.g., site or city)	State-level data for 1-3 states	State-level data for 4-24 states or national data applied to individual states	State-level data for 25-39 states	State-level data for 40-50 states
Maximum Score Possible					25/5 $=5.0$
Minimum Score Possible					$5 / 5=1.0$

Grading Scale: Very High: 5.0, High: 4.0-4.9, Medium: 3.0-3.9, Low: 2.0-2.9, Very Low: 1.0-1.9

